100 research outputs found

    Long-term warming alters the composition of Arctic soil microbial communities

    Get PDF
    Despite the importance of Arctic soils in the global carbon cycle, we know very little of the impacts of warming on the soil microbial communities that drive carbon and nutrient cycling in these ecosystems. Over a 2-year period, we monitored the structure of soil fungal and bacterial communities in organic and mineral soil horizons in plots warmed by greenhouses for 18 years and in control plots. We found that microbial communities were stable over time but strongly structured by warming. Warming led to significant reductions in the evenness of bacterial communities, while the evenness of fungal communities increased significantly. These patterns were strongest in the organic horizon, where temperature change was greatest and were associated with a significant increase in the dominance of the Actinobacteria and significant reductions in the Gemmatimonadaceae and the Proteobacteria. Greater evenness of the fungal community with warming was associated with significant increases in the ectomycorrhizal fungi, Russula spp., Cortinarius spp., and members of the Helotiales suggesting that increased growth of the shrub Betula nana was an important mechanism driving this change. The shifts in soil microbial community structure appear sufficient to account for warming-induced changes in nutrient cycling in Arctic tundra as climate warm

    Harvesting Intensity and Aridity Are More Important Than Climate Change in Affecting Future Carbon Stocks of Douglas-Fir Forests

    Get PDF
    Improved forest management may offer climate mitigation needed to hold warming to below 2°C. However, uncertainties persist about the effects of harvesting intensity on forest carbon sequestration, especially when considering interactions with regional climate and climate change. Here, we investigated the combined effects of harvesting intensity, climatic aridity, and climate change on carbon stocks in Douglas-fir [Pseudotsuga menziesii Mirb. (Franco)] stands. We used the Carbon Budget Model of the Canadian Forest Sector to simulate the harvest and regrowth of seven Douglas-fir stand types covering a 900 km-long climate gradient across British Columbia, Canada. In particular, we simulated stand growth under three regimes (+17%, −17% and historical growth increment) and used three temperature regimes [historical, representative concentration pathways (RCP) 2.6 and RCP 8.5]. Increasing harvesting intensity led to significant losses in total ecosystem carbon stocks 50 years post-harvest. Specifically, forests that underwent clearcutting were projected to stock about 36% less carbon by 2,069 than forests that were left untouched. Belowground carbon stocks 50 years into the future were less sensitive to harvesting intensity than aboveground carbon stocks and carbon losses were greater in arid interior Douglas-fir forests than in humid, more productive forests. In addition, growth multipliers and decay due to the RCP’s had little effect on total ecosystem carbon, but aboveground carbon declined by 7% (95% confidence interval [−10.98, −1.81]) in the high emissions (RCP8.5) scenario. We call attention to the implementation of low intensity harvesting systems to preserve aboveground forest carbon stocks until we have a more complete understanding of the impacts of climate change on British Columbia’s forests

    Decline of an Ecotone Forest: 50 Years of Demography in the Southern Boreal Forest

    Get PDF
    Variation in tree recruitment, mortality, and growth can alter forest community composition and structure. Because tree recruitment and mortality events are generally infrequent, long‐time scales are needed to confirm trends in forests. We performed a 50‐yr demographic census of a forest plot located on the southern edge of the Canadian boreal forest, a region currently experiencing forest die‐back in response to direct and indirect effects of recent severe droughts. Here, we show that over the last 30 yr biomass, basal area, growth, and recruitment have decreased along with a precipitous rise in mortality across the dominant tree species. The stand experienced periods of drought in combination with multiple outbreaks of forest tent caterpillar (Malacosoma disstria) and bark beetles. These insect disturbances interacted to increase mortality rates within the stand and decrease stand density. The interaction of endogenous and exogenous factors may shift forests in this region onto novel successional trajectories with the possibility of changes in regional vegetation type

    Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: results from the Canadian IPY program

    Get PDF
    Published VersionTundra and taiga ecosystems comprise nearly 40 % of the terrestrial landscapes of Canada. These permafrost ecosystems have supported humans for more than 4500 years, and are currently home to ca. 115,000 people, the majority of whom are First Nations, Inuit and MĂ©tis. The responses of these ecosystems to the regional warming over the past 30–50 years were the focus of four Canadian IPY projects. Northern residents and researchers reported changes in climate and weather patterns and noted shifts in vegetation and other environmental variables. In forest-tundra areas tree growth and reproductive effort correlated with temperature, but seedling establishment was often hindered by other factors resulting in sitespecific responses. Increased shrub cover has occurred in sites across the Arctic at the plot and landscape scale, and this was supported by results from experimental warming. Experimental warming increased vegetation cover and nutrient availability in most tundra soils; however, resistance to warming was also found. Soil microbial diversity in tundra was no different than in other biomes, although there were shifts in mycorrhizal diversity in warming experiments. All sites measured were sinks for carbon during the growing season with expected seasonal and latitudinal patterns. Modeled responses of a mesic tundra system to climate change showed that the sink status will likely continue for the next 50–100 years, after which these tundra systems will likely become a net source of carbon dioxide to the atmosphere. These IPY studies were the first comprehensive assessment of the state and change in Canadian northern terrestrial ecosystems and showed that the inherent variability in these systems is reflected in their site-specific responses to changes in climate. They also showed the importance of using local traditional knowledge and science, and provided extensive data sets, sites and researchers needed to study and manage the inevitable changes in the Canadian North
    • 

    corecore