16 research outputs found

    Natural Gas Refinery Wastewater Treatment by Zeolites

    Get PDF
    The purpose of this study is to experimentally investigate the SAR (Sodium Adsorption Ratio) and TDS (Total Dissolved Solids) reduction in reverse osmosis (RO) concentrate, using two types of natural zeolites. In order to reduce salinity of wastewater, experiments are carried out by varying the type of zeolite, concentration of zeolite, and residence time. The results show that both zeolites can lower the SAR and TDS of wastewater; however, Rhyolitic tuff is more effective than clinoptilolite. It is observed that the concentration of zeolite has not significant effects on wastewater treatment so, using the lowest level of selected concentration reduces the cost of desalination. In addition, the effect of residence time is negligible. The experimental set up shows that the SAR reduction slop is higher than TDS

    Natural Gas Refinery Wastewater Treatment by Zeolites

    Full text link

    Mechanism understanding of Li-ion separation using a perovskite-based membrane

    Get PDF
    Lithium ions play a crucial role in the energy storage industry. Finding suitable lithium-ion-conductive membranes is one of the important issues of energy storage studies. Hence, a perovskite-based membrane, Lithium Lanthanum Titanate (LLTO), was innovatively implemented in the presence and absence of solvents to precisely understand the mechanism of lithium ion separation. The ion-selective membrane’s mechanism and the perovskite-based membrane’s efficiency were investigated using Molecular Dynamic (MD) simulation. The results specified that the change in the ambient condition, pH, and temperature led to a shift in LLTO pore sizes. Based on the results, pH plays an undeniable role in facilitating lithium ion transmission through the membrane. It is noticeable that the hydrogen bond interaction between the ions and membrane led to an expanding pore size, from (1.07 Å) to (1.18 – 1.20 Å), successfully enriching lithium from seawater. However, this value in the absence of the solvent would have been 1.1 Å at 50 °C. It was found that increasing the temperature slightly impacted lithium extraction. The charge analysis exhibited that the trapping energies applied by the membrane to the first three ions (Li +, K +, and Na+) were more than the ions’ hydration energies. Therefore, Li +, K +, and Na + were fully dehydrated, whereas Mg2 + was partially dehydrated and could not pass through the membrane. Evaluating the membrane window diameter, and the combined effect of the three key parameters (barrier energy, hydration energy, and binding energy) illustrates that the required energy to transport Li ions through the membrane is higher than that for other monovalent cations

    Porosity effects in flame length of the porous burners

    Get PDF
    Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD) is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable

    Engineering of 2D nanomaterials to trap and kill SARS-CoV-2 : a new insight from multi-microsecond atomistic simulations

    Get PDF
    In late 2019, coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Spike protein is one of the surface proteins of SARS-CoV-2 that is essential for its infectious function. Therefore, it received lots of attention for the preparation of antiviral drugs, vaccines, and diagnostic tools. In the current study, we use computational methods of chemistry and biology to study the interaction between spike protein and its receptor in the body, angiotensin-I-converting enzyme-2 (ACE2). Additionally, the possible interaction of two-dimensional (2D) nanomaterials, including graphene, bismuthene, phosphorene, p-doped graphene, and functionalized p-doped graphene, with spike protein is investigated. The functionalized p-doped graphene nanomaterials were found to interfere with spike protein better than the other tested nanomaterials. In addition, the interaction of the proposed nanomaterials with the main protease (M-pro) of SARS-CoV-2 was studied. Functionalized p-doped graphene nanomaterials showed more capacity to prevent the activity of M-pro. These 2D nanomaterials efficiently reduce the transmissibility and infectivity of SARS-CoV-2 by both the deformation of the spike protein and inhibiting the M-pro. The results suggest the potential use of 2D nanomaterials in a variety of prophylactic approaches, such as masks or surface coatings, and would deserve further studies in the coming years.Peer reviewe

    Materials discovery of ion-selective membranes using artificial intelligence

    Get PDF
    Significant attempts have been made to improve the production of ion-selective membranes (ISMs) with higher efficiency and lower prices, while the traditional methods have drawbacks of limitations, high cost of experiments, and time-consuming computations. One of the best approaches to remove the experimental limitations is artificial intelligence (AI). This review discusses the role of AI in materials discovery and ISMs engineering. The AI can minimize the need for experimental tests by data analysis to accelerate computational methods based on models using the results of ISMs simulations. The coupling with computational chemistry makes it possible for the AI to consider atomic features in the output models since AI acts as a bridge between the experimental data and computational chemistry to develop models that can use experimental data and atomic properties. This hybrid method can be used in materials discovery of the membranes for ion extraction to investigate capabilities, challenges, and future perspectives of the AI-based materials discovery, which can pave the path for ISMs engineering

    Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins

    Get PDF
    Macrophage targeting and researches centered on immunological responses have received interest thanks to studies unveiling the significant role of macrophages in inflammatory diseases and cancer. In this regard, we have selected four types of nanoparticles (NPs), including acetalated dextran-based nano-carrier functionalized with atrial natriuretic peptide and linTT1(AcDEX-PEG-TT1-ANP), PEGylated acetalated dextran (AcDEX-PEG), acetalated dextran (AcDEX), and hyaluronic acid (HA) to investigate their interactions with macrophage membrane. Using microsecond coarse-grained molecular dynamics (MD) simulations, we studied the interactions between the NPs and the macrophage membrane and subsequent immunological reactions that occur after the penetration of the NPs within the macrophage cell. Different parameters that determine the strength and amount of macrophage membrane interaction were measured and compared for all four types of NPs. The results showed that AcDEX-PEG-TT1-ANP has the most favorable interaction with the macrophage membrane while HA has the least favorable results by comparison. Moreover, drug encapsulation and release in different pH conditions showed the pH-responsivity of the considered NPs for drug delivery in acidic environments. On the other hand, evaluations with human serum albumin (HSA), fibrinogen (Fib), and transferrin (Tf) declared that peptide modified AcDEX polymers are the most probable NPs to absorb a layer of the protein corona

    Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties

    Get PDF
    Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random"model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface"mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis. © 2021 The Authors. Published by American Chemical Society

    PLGA-Based Nanoparticles in Cancer Treatment

    Get PDF
    Nanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy. Strategies are emphasized to target PLGA NPs to the tumor site passively and actively. Furthermore, combination therapies are introduced that enhance the accumulation of NPs and, thereby, their therapeutic efficacy. In this context, the huge number of reports on PLGA NPs used as drug delivery systems in cancer treatment highlight the potential of PLGA NPs as drug carriers for cancer therapeutics and encourage further translational research

    Treatments of reverse osmosis concentrate using natural zeolites

    No full text
    The purpose of the current study is to experimentally investigate the reduction of sodium adsorption ratio (SAR) from a concentrated stream of reversed osmosis (RO) using natural zeolites. In order to reduce the salinity of solution, experiments were carried out using zeolites of varying concentration, pretreatment of adsorbents, and the addition of Ethylenediaminetetraacetic acid (EDTA). The results show that both zeolites can be used in an RO brine treatment; however, Rhyolitic tuff is more effective than clinoptilolite for the reduction of water salinity. The experiments show that Rhyolitic tuff decreases salinity of RO concentrate to nearly one – third of the initial value. Statistical analyses show that the effect of zeolite concentration is negligible. Furthermore, the addition of EDTA and pretreatment of zeolite increase the SAR values
    corecore