5,008 research outputs found

    Symmetry breaking and unconventional charge ordering in single crystal Na2.7_{2.7}Ru4_4O9_9

    Get PDF
    The interplay of charge, spin, and lattice degrees of freedom in matter leads to various forms of ordered states through phase transitions. An important subclass of these phenomena of complex materials is charge ordering (CO), mainly driven by mixed-valence states. We discovered by combining the results of electrical resistivity (ρ\rho), specific heat, susceptibility χ\chi (\textit{T}), and single crystal x-ray diffraction (SC-XRD) that Na2.7_{2.7}Ru4_4O9_9 with the monoclinic tunnel type lattice (space group CC2/mm) exhibits an unconventional CO at room temperature while retaining metallicity. The temperature-dependent SC-XRD results show successive phase transitions with super-lattice reflections at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) and \textbf{q}2_2=(0, 13\frac{1}{3}, 13\frac{1}{3}) below TC2T_{\textrm{C2}} (365 K) and only at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) between TC2T_{\textrm{C2}} and TC1T_{\textrm{C1}} (630 K). We interpreted these as an evidence for the formation of an unconventional CO. It reveals a strong first-order phase transition in the electrical resistivity at TC2T_{\textrm{C2}} (cooling) = 345 K and TC2T_{\textrm{C2}} (heating) = 365 K. We argue that the origin of the phase transition is due to the localized 4dd Ru-electrons. The results of our finding reveal an unique example of Ru3+^{3+}/Ru4+^{4+} mixed valance heavy \textit{d}4^4 ions.Comment: 10 pages, 9 figure

    Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator

    Full text link
    We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B^* and B_0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B^* is parallel or antiparallel to B_0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Coulomb Blockade and Kondo Effect in a Quantum Hall Antidot

    Full text link
    We propose a general capacitive model for an antidot, which has two localized edge states with different spins in the quantum Hall regime. The capacitive coupling of localized excess charges, which are generated around the antidot due to magnetic flux quantization, and their effective spin fluctuation can result in Coulomb blockade, h/(2e) Aharonov-Bohm oscillations, and the Kondo effect. The resultant conductance is in qualitative agreement with recent experimental data.Comment: 3 figures, to appear in Physical Review Letter

    Smart One-Channel Sensor Node for Ambient Vibration Test with Applications to Structural Health Monitoring of Large Civil Infrastructures

    Get PDF
    Dynamic characteristics of structures have been monitored for safe operation and efficient maintenance of large civil infrastructures. For vibration data measurement, the conventional system uses cables, which cause very expensive costs and inconvenient installation. Therefore, various wireless sensor nodes have been developed to replace the conventional wired system. However, there still remain lots of issues to be resolved such as time synchronization between sensor nodes, data loss, data security, and power supply. In this study, Smart One-Channel Sensor Node (SOSN) was developed to measure vibration data, which can practically solve the issues on installation, time synchronization, and data storage. It is designed for temporal measurement with a limited capacity to operate for several hours using embedded batteries. Laboratory tests were carried out to verify the performance of the developed SOSN compared with conventional wired system. Its practical advantages were investigated through three full-scale tests on large civil infrastructures. Three field applications revealed that SOSN is a very practical tool for short-term monitoring of large civil infrastructures with respect to traffic control, installation time and convenience, secure data gathering, and so forth.open0

    First-Principles Study on Electron Conduction in Sodium Nanowire

    Full text link
    We present detailed first-principles calculations of the electron-conduction properties of a three-sodium-atom nanowire suspended between semi-infinite crystalline Na(001) electrodes during its elongation. Our investigations reveal that the conductance is ~1 G0 before the nanowire breaks and only one channel with the characteristic of the 3s3s orbital of the center atom in the nanowire contributes to the electron conduction. Moreover, the channel fully opens around the Fermi level, and the behavior of the channel-current density is insensitive to the structural deformation of the nanowire. These results verify that the conductance trace as a function of the electrode spacing exhibits a flat plateau at ~1 G0 during elongation.Comment: 8 pages, 5 figure

    Spatial Regulation of ABCG25, an ABA Exporter, Is an Important Component of the Mechanism Controlling Cellular ABA Levels

    Get PDF
    The phytohormone abscisic acid (ABA) plays crucial roles in various physiological processes, including responses to abiotic stresses, in plants. Recently, multiple ABA transporters were identified. The loss-of-function and gain-of-function mutants of these transporters show altered ABA sensitivity and stomata regulation, highlighting the importance of ABA transporters in ABA-mediated processes. However, how the activity of these transporters is regulated remains elusive. Here, we show that spatial regulation of ATP BINDING CASETTE G25 (ABCG25), an ABA exporter, is an important mechanism controlling its activity. ABCG25, as a soluble green fluorescent protein (sGFP) fusion, was subject to posttranslational regulation via clathrin-dependent and adaptor protein complex-2-dependent endocytosis followed by trafficking to the vacuole. The levels of sGFP: ABCG25 at the plasma membrane (PM) were regulated by abiotic stresses and exogenously applied ABA; PM-localized sGFP: ABCG25 decreased under abiotic stress conditions via activation of endocytosis in an ABA-independent manner, but increased upon application of exogenous ABA via activation of recycling from early endosomes in an ABA-dependent manner. Based on these findings, we propose that the spatial regulation of ABCG25 is an important component of the mechanism by which plants fine-tune cellular ABA levels according to cellular and environmental conditions.1197Ysciescopu

    P and K additions enhance canopy N retention and accelerate the associated leaching

    Get PDF
    This study evaluated the interactive effects of combined phosphorus (P) and potassium (K) additions on canopy nitrogen (N) retention (CNR) and subsequent canopy leaching at a long-term N manipulation site on Whim bog in south Scotland. Ambient deposition is 8 kg N ha-1 year-1 and an additional 8, 24, and 56 kg N ha-1 year-1 of either ammonium (NH4+) or nitrate (NO3-) with or without P and K has been applied over 11 years. Throughfall N deposition below Calluna vulgaris and foliar N and P concentrations were assessed. Results showed that 60% for low dose and 53% for high dose of NO3- contrasting with 80% for low dose and 38% for high dose of NH4+ onto Calluna was retained by Calluna canopy. The CNR was enhanced by P and K addition in which 84% of NO3 - and 83% of NH4+ for high dose were retained. CNR for NO3- increased the canopy leaching of dissolved organic N (DON) and associated organic anions. NH4+ retention increased canopy leaching of magnesium and calcium through ion exchange. Even over 11-years N exposure without P and K, foliage 29 N:P ratio of Calluna did not increase, suggesting that N exposure did not lead to N saturation of Calluna at Whim bog. Our study concluded that increases in P and K availability enhance CNR of Calluna, but accelerate the associated canopy leaching of DON and base cations, depending on foliar N status

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure
    corecore