29 research outputs found

    Hard-needle elastomer in one spatial dimension

    Full text link
    We perform exact Statistical Mechanics calculations for a system of elongated objects (hard needles) that are restricted to translate along a line and rotate within a plane, and that interact via both excluded-volume steric repulsion and harmonic elastic forces between neighbors. This system represents a one-dimensional model of a liquid crystal elastomer, and has a zero-tension critical point that we describe using the transfer-matrix method. In the absence of elastic interactions, we build on previous results by Kantor and Kardar, and find that the nematic order parameter QQ decays linearly with tension σ\sigma. In the presence of elastic interactions, the system exhibits a standard universal scaling form, with Q/∣σ∣Q / |\sigma| being a function of the rescaled elastic energy constant k/∣σ∣Δk / |\sigma|^\Delta, where Δ\Delta is a critical exponent equal to 22 for this model. At zero tension, simple scaling arguments lead to the asymptotic behavior Q∼k1/ΔQ \sim k^{1/\Delta}, which does not depend on the equilibrium distance of the springs in this model.Comment: 6 pages, 4 figures, to be submitted to a special issue in Brazilian Journal of Physics in honor of Prof. Silvio R. Salina

    A thermodynamical fiber bundle model for the fracture of disordered materials

    Full text link
    We investigate a disordered version of a thermodynamic fiber bundle model proposed by Selinger, Wang, Gelbart, and Ben-Shaul a few years ago. For simple forms of disorder, the model is analytically tractable and displays some new features. At either constant stress or constant strain, there is a non monotonic increase of the fraction of broken fibers as a function of temperature. Moreover, the same values of some macroscopic quantities as stress and strain may correspond to different microscopic cofigurations, which can be essential for determining the thermal activation time of the fracture. We argue that different microscopic states may be characterized by an experimentally accessible analog of the Edwards-Anderson parameter. At zero temperature, we recover the behavior of the irreversible fiber bundle model.Comment: 18 pages, 10 figure

    Compressible Sherrington-Kirkpatrick spin-glass model

    Full text link
    We introduce a Sherrington-Kirkpatrick spin-glass model with the addition of elastic degrees of freedom. The problem is formulated in terms of an effective four-spin Hamiltonian in the pressure ensemble, which can be treated by the replica method. In the replica-symmetric approximation, we analyze the pressure-temperature phase diagram, and obtain expressions for the critical boundaries between the disordered and the ordered (spin-glass and ferromagnetic) phases. The second-order para-ferromagnetic border ends at a tricritical point, beyond which the transition becomes discontinuous. We use these results to make contact with the temperature-concentration phase diagrams of mixtures of hydrogen-bonded crystals.Comment: 8 pages, 2 figures; added references, added conten
    corecore