717 research outputs found

    From the Intersection of Food-Borne Zoonoses and EU Green Policies to an In-Embryo One Health Financial Model

    Get PDF
    The European Union (EU) adopts the One Health (OH) approach, based on the relationships between human, animal, and environmental health. OH concerns a multitude of aspects, some of which are discussed here. OH overlaps the European Green Deal plan and its relaunched Farm to Fork Strategy, which aims at spreading organic farms adopting the circular economy, in order to improve human health through both better environmental conditions and healthier food. Nevertheless, zoonoses cause sanitary cost in terms of infected farm personnel, lower productivity, and lower fertility of infected farm animals. In such scenarios, the decreased breeding yield and the lower income induce higher cost of farm products, meaning that the market price rises, becoming uncompetitive when compared to the prices of industrial products. Consequently, lower revenues can hinder the farm growth expected in the framework of the EU Green Deal. Since zoonosis control is a key element in aligning EU policies aimed at achieving the EU Green Deal goal of “ZERO environmental impact” by 2050, the authors suggest the inclusion of the parameter economic health in the OH approach, in order to individuate EU Member States (MSs) economically unable to conduct eradication programmes and to finance them. Economic health is here considered as a starting point of the new ethical and science-based One Health Financial Model that the authors suggest as an in-embryo model, in which specific rules should regulate public funds, private investments, and trading, which should exclusively concern public services and private enterprises complying with most of the OH parameters. In this way, economic losses due to collateral negative effects deriving from human activities can be progressively decreased, and the entire planet will benefit from the process. Despite the considerable efforts being carried out in the context of the OH approach, war causes tragic and devastating effects on the physical and mental health of human beings, on their lives, on pandemic and zoonotic threats, on animals, on plants and, last but not least, on the environment. War is incompatible with OH. Enormous efforts for peace are therefore urgently needed

    Doxorubicin-Mediated Cardiotoxicity: Role of Mitochondrial Connexin 43

    Get PDF
    Doxorubicin is the highly effective anthracycline, but its clinical use is limited by cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this is related to mitochondrial dysfunction. Connexin 43 (Cx43), the principal protein building block of cardiac gap junctions and hemichannels, plays an important role in cardioprotection. Recent reports confirmed the presence of Cx43 in the mitochondria as well. In this study, the role of mitochondrial Cx43 was evaluated 3 or 6 h after Doxorubicin administration to the rat heart cell line H9c2. Pharmacological inhibition of Hsp90 demonstrated that the mitochondrial Cx43 conferred cardioprotection by reducing cytosolic and mitochondrial reactive oxygen species production, mitochondrial calcium overload and mitochondrial membrane depolarization and cytochrome c release. In conclusion, our study demonstrates that Cx43 plays an important role in the protection of cardiac cells from Doxorubicin-induced toxicity

    Mutations in the Cardiac Ryanodine Receptor Gene (hRyR2) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia is a genetic arrhythmogenic disorder characterized by stress-induced, bidirectional ventricular tachycardia that may degenerate into cardiac arrest and cause sudden death. The electrocardiographic pattern of this ventricular tachycardia closely resembles the arrhythmias associated with calcium overload and the delayed afterdepolarizations observed during digitalis toxicity. We speculated that a genetically determined abnormality of intracellular calcium handling might be the substrate of the disease; therefore, we considered the human cardiac ryanodine receptor gene (hRyR2) a likely candidate for this genetically transmitted arrhythmic disorder. METHODS AND RESULTS: Twelve patients presenting with typical catecholaminergic polymorphic ventricular tachycardia in the absence of structural heart abnormalities were identified. DNA was extracted from peripheral blood lymphocytes, and single-strand conformation polymorphism analysis was performed on polymerase chain reaction-amplified exons of the hRyR2 gene. Four single nucleotide substitutions leading to missense mutations were identified in 4 probands affected by the disease. Genetic analysis of the asymptomatic parents revealed that 3 probands carried de novo mutations. In 1 case, the identical twin of the proband died suddenly after having suffered syncopal episodes. The fourth mutation was identified in the proband, in 4 clinically affected family members, and in none of 3 nonaffected family members in a kindred with 2 sudden deaths that occurred at 16 and 14 years, respectively, in the sisters of the proband. CONCLUSIONS: We demonstrated that, in agreement with our hypothesis, hRyR2 is a gene responsible for catecholaminergic polymorphic ventricular tachycardia

    Levetiracetam enhances the Temozolomide effect on glioblastoma stem cell proliferation

    Get PDF
    Glioblastoma Multiforme (GBM) is a highly aggressive brain tumor in which cancer cells with stem cell-like features, called Cancer Stem Cells (CSCs), were identified. CSCs show a high capacity to resist to standard therapies, finally leading to a poor prognosis. Thus, the development of efficient strategies targeting these cells are urgently needed. We have previously demonstrated the presence of two CSC populations in GBM, one derived from the GBM area called enhanced lesion (GCSC) and the other one from the brain area adjacent to the tumor margin (PCSC), that greatly differ in their growth properties and tumor-initiating ability. Tumor recurrence occurs in tissue neighboring GBM suggesting a growing relevance for this area in translational research. To date the most effective chemotherapies to treat GBM are alkylating agents such as temozolomide (TMZ). Epigenetic mechanisms are increasingly recognized as a major factor contributing to pathogenesis of cancer including glioblastoma. Histone deacetylase (HDAC) inhibitors can interfere with TMZ activity by modulating methylguanine methyltransferase (MGMT) expression, resulting in increased TMZ efficacy. Levetiracetam (LEV), an antiepileptic drug, is known to modulate the transcription of HDAC, ultimately silencing MGMT.Since TMZ is the chemotherapeutic agent most widely used in newly diagnosed adult glioblastoma patients, we evaluated its effects on the proliferation rate of both GCSC and PCSC deriving from five patients, in comparison with the effects of other drugs such as etoposide, irinotecan and car-boplatin. Our results demonstrated that TMZ was the less efficient agent, hence we verified the pos-sibility to increase the effect of TMZ by combining it with LEV. Here we show that LEV signifi-cantly enhances the inhibitory effect of TMZ on the proliferation of the GCSC deriving from four patients and of the PCSC deriving from two patients. This effect seems to be mediated by HDAC6 since its expression is up-regulated in the TMZ resistant cells and correlates with MGMT expression. Taken together our results suggest that GCSC and PCSC differ in their ability to respond to the combined chemotherapeutic treatment we used and that the manipulation of HDAC6 expression might be a potential strategy for treating glioblastoma and overcoming resistance to TMZ

    Deep ensemble learning and transfer learning methods for classification of senescent cells from nonlinear optical microscopy images

    Get PDF
    The success of chemotherapy and radiotherapy anti-cancer treatments can result in tumor suppression or senescence induction. Senescence was previously considered a favorable therapeutic outcome, until recent advancements in oncology research evidenced senescence as one of the culprits of cancer recurrence. Its detection requires multiple assays, and nonlinear optical (NLO) microscopy provides a solution for fast, non-invasive, and label-free detection of therapy-induced senescent cells. Here, we develop several deep learning architectures to perform binary classification between senescent and proliferating human cancer cells using NLO microscopy images and we compare their performances. As a result of our work, we demonstrate that the most performing approach is the one based on an ensemble classifier, that uses seven different pre-trained classification networks, taken from literature, with the addition of fully connected layers on top of their architectures. This approach achieves a classification accuracy of over 90%, showing the possibility of building an automatic, unbiased senescent cells image classifier starting from multimodal NLO microscopy data. Our results open the way to a deeper investigation of senescence classification via deep learning techniques with a potential application in clinical diagnosis

    A novel mutation in NDUFB11 unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia

    Get PDF
    NDUFB11, a component of mitochondrial complex I, is a relatively small integral membrane protein, belonging to the 'supernumerary' group of subunits, but proved to be absolutely essential for the assembly of an active complex I. Mutations in in the X-linked nuclear encoded NDUFB11 gene have recently been discovered in association with two distinct phenotypes, i.e. microphthalmia with linear skin defects and histiocytoid cardiomyopathy. We report on a male with complex I deficiency, caused by a de novo mutation in NDUFB11 and displaying early onset sideroblastic anemia as the unique feature. This is the third report that describes a mutation in NDUFB11 but all are associated to a different phenotype. Our results further expand the molecular spectrum and associated clinical phenotype of NDUFB11 defects

    YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins

    Get PDF
    Mutant p53 proteins are present in more than half of human cancers. Yes-associated protein (YAP) is a key transcriptional regulator controlling organ growth, tissue homeostasis, and cancer. Here, we report that these two determinants of human malignancy share common transcriptional signatures. YAP physically interacts with mutant p53 proteins in breast cancer cells and potentiates their pro-proliferative transcriptional activity. We found YAP as well as mutant p53 and the transcription factor NF-Y onto the regulatory regions of cyclin A, cyclin B, and CDK1 genes. Either mutant p53 or YAP depletion down-regulates cyclin A, cyclin B, and CDK1 gene expression and markedly slows the growth of diverse breast cancer cell lines. Pharmacologically induced cytoplasmic re-localization of YAP reduces the expression levels of cyclin A, cyclin B, and CDK1 genes both in vitro and in vivo. Interestingly, primary breast cancers carrying p53 mutations and displaying high YAP activity exhibit higher expression levels of cyclin A, cyclin B, and CDK1 genes when compared to wt-p53 tumors
    • …
    corecore