946 research outputs found

    From the Intersection of Food-Borne Zoonoses and EU Green Policies to an In-Embryo One Health Financial Model

    Get PDF
    The European Union (EU) adopts the One Health (OH) approach, based on the relationships between human, animal, and environmental health. OH concerns a multitude of aspects, some of which are discussed here. OH overlaps the European Green Deal plan and its relaunched Farm to Fork Strategy, which aims at spreading organic farms adopting the circular economy, in order to improve human health through both better environmental conditions and healthier food. Nevertheless, zoonoses cause sanitary cost in terms of infected farm personnel, lower productivity, and lower fertility of infected farm animals. In such scenarios, the decreased breeding yield and the lower income induce higher cost of farm products, meaning that the market price rises, becoming uncompetitive when compared to the prices of industrial products. Consequently, lower revenues can hinder the farm growth expected in the framework of the EU Green Deal. Since zoonosis control is a key element in aligning EU policies aimed at achieving the EU Green Deal goal of “ZERO environmental impact” by 2050, the authors suggest the inclusion of the parameter economic health in the OH approach, in order to individuate EU Member States (MSs) economically unable to conduct eradication programmes and to finance them. Economic health is here considered as a starting point of the new ethical and science-based One Health Financial Model that the authors suggest as an in-embryo model, in which specific rules should regulate public funds, private investments, and trading, which should exclusively concern public services and private enterprises complying with most of the OH parameters. In this way, economic losses due to collateral negative effects deriving from human activities can be progressively decreased, and the entire planet will benefit from the process. Despite the considerable efforts being carried out in the context of the OH approach, war causes tragic and devastating effects on the physical and mental health of human beings, on their lives, on pandemic and zoonotic threats, on animals, on plants and, last but not least, on the environment. War is incompatible with OH. Enormous efforts for peace are therefore urgently needed

    Doxorubicin-Mediated Cardiotoxicity: Role of Mitochondrial Connexin 43

    Get PDF
    Doxorubicin is the highly effective anthracycline, but its clinical use is limited by cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this is related to mitochondrial dysfunction. Connexin 43 (Cx43), the principal protein building block of cardiac gap junctions and hemichannels, plays an important role in cardioprotection. Recent reports confirmed the presence of Cx43 in the mitochondria as well. In this study, the role of mitochondrial Cx43 was evaluated 3 or 6 h after Doxorubicin administration to the rat heart cell line H9c2. Pharmacological inhibition of Hsp90 demonstrated that the mitochondrial Cx43 conferred cardioprotection by reducing cytosolic and mitochondrial reactive oxygen species production, mitochondrial calcium overload and mitochondrial membrane depolarization and cytochrome c release. In conclusion, our study demonstrates that Cx43 plays an important role in the protection of cardiac cells from Doxorubicin-induced toxicity

    Modulation of the One Health Approach to Tackle Brucellosis in Buffaloes and Cattle in Two Italian Territories with Different Characteristics

    Get PDF
    The new European Union animal health law and its rule concerning brucellosis in cattle and buffaloes The authors examine the latest European Union (EU) rules concerning eradication and surveillance of brucellosis and animal infectious diseases of EU concern. The Italian rules concerning brucellosis in cattle and buffaloes Italy is included in the EU co-financed compulsory eradication and surveillance programmes for brucellosis in cattle and in buffaloes in the frame of the EU and the related Italian laws, which allowed reaching the Brucellosis Free status without vaccination (former "Officially Brucellosis Free - OBF" status) in the majority of the northern and middle Italian Regions and in some middle and southern Provinces included in Regions where the infection persists. Epidemiology of brucellosis in the EU and in Italy In the Italian Province of Caserta, the highest prevalence of brucellosis in buffaloes is reported; in 2017-2021, a total of 314 outbreaks occurred, in which 39,163 heads tested positive. Here, brucellosis is threatening not only human health and the widespread buffaloes breeding but also the important satellite activities concerning the Protected Designation of Origin (P.O.D.) cheese “Mozzarella di Bufala Campana". The authors also discuss the reemerged brucellosis in cattle in the Molise Region, which despite bordering the Province of Caserta, shows different hydrographic, orographic, and breeding characteristics. In Molise, the reemerged brucellosis had a very different epidemiological course, which allowed it to limit the adoption of One Health measures. The One Health approach to tackle brucellosis in buffaloes In order to tackle brucellosis in Campania Region and in its Province of Caserta, the One Health approach has been predisposed through strict control of animal health, human health, and the environment. The adopted model could be exportable to territories having similar characteristics

    Mutations in the Cardiac Ryanodine Receptor Gene (hRyR2) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia is a genetic arrhythmogenic disorder characterized by stress-induced, bidirectional ventricular tachycardia that may degenerate into cardiac arrest and cause sudden death. The electrocardiographic pattern of this ventricular tachycardia closely resembles the arrhythmias associated with calcium overload and the delayed afterdepolarizations observed during digitalis toxicity. We speculated that a genetically determined abnormality of intracellular calcium handling might be the substrate of the disease; therefore, we considered the human cardiac ryanodine receptor gene (hRyR2) a likely candidate for this genetically transmitted arrhythmic disorder. METHODS AND RESULTS: Twelve patients presenting with typical catecholaminergic polymorphic ventricular tachycardia in the absence of structural heart abnormalities were identified. DNA was extracted from peripheral blood lymphocytes, and single-strand conformation polymorphism analysis was performed on polymerase chain reaction-amplified exons of the hRyR2 gene. Four single nucleotide substitutions leading to missense mutations were identified in 4 probands affected by the disease. Genetic analysis of the asymptomatic parents revealed that 3 probands carried de novo mutations. In 1 case, the identical twin of the proband died suddenly after having suffered syncopal episodes. The fourth mutation was identified in the proband, in 4 clinically affected family members, and in none of 3 nonaffected family members in a kindred with 2 sudden deaths that occurred at 16 and 14 years, respectively, in the sisters of the proband. CONCLUSIONS: We demonstrated that, in agreement with our hypothesis, hRyR2 is a gene responsible for catecholaminergic polymorphic ventricular tachycardia

    Levetiracetam enhances the Temozolomide effect on glioblastoma stem cell proliferation

    Get PDF
    Glioblastoma Multiforme (GBM) is a highly aggressive brain tumor in which cancer cells with stem cell-like features, called Cancer Stem Cells (CSCs), were identified. CSCs show a high capacity to resist to standard therapies, finally leading to a poor prognosis. Thus, the development of efficient strategies targeting these cells are urgently needed. We have previously demonstrated the presence of two CSC populations in GBM, one derived from the GBM area called enhanced lesion (GCSC) and the other one from the brain area adjacent to the tumor margin (PCSC), that greatly differ in their growth properties and tumor-initiating ability. Tumor recurrence occurs in tissue neighboring GBM suggesting a growing relevance for this area in translational research. To date the most effective chemotherapies to treat GBM are alkylating agents such as temozolomide (TMZ). Epigenetic mechanisms are increasingly recognized as a major factor contributing to pathogenesis of cancer including glioblastoma. Histone deacetylase (HDAC) inhibitors can interfere with TMZ activity by modulating methylguanine methyltransferase (MGMT) expression, resulting in increased TMZ efficacy. Levetiracetam (LEV), an antiepileptic drug, is known to modulate the transcription of HDAC, ultimately silencing MGMT.Since TMZ is the chemotherapeutic agent most widely used in newly diagnosed adult glioblastoma patients, we evaluated its effects on the proliferation rate of both GCSC and PCSC deriving from five patients, in comparison with the effects of other drugs such as etoposide, irinotecan and car-boplatin. Our results demonstrated that TMZ was the less efficient agent, hence we verified the pos-sibility to increase the effect of TMZ by combining it with LEV. Here we show that LEV signifi-cantly enhances the inhibitory effect of TMZ on the proliferation of the GCSC deriving from four patients and of the PCSC deriving from two patients. This effect seems to be mediated by HDAC6 since its expression is up-regulated in the TMZ resistant cells and correlates with MGMT expression. Taken together our results suggest that GCSC and PCSC differ in their ability to respond to the combined chemotherapeutic treatment we used and that the manipulation of HDAC6 expression might be a potential strategy for treating glioblastoma and overcoming resistance to TMZ

    Biodiversity of Lactobacillus plantarum from traditional Italian wines

    Get PDF
    In this study, 23 samples of traditional wines produced in Southern Italy were subjected to microbiological analyses with the aim to identify and biotype the predominant species of lactic acid bacilli. For this purpose, a multiple approach, consisting in the application of both phenotypic (API 50CHL test) and biomolecular methods (polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing) was used. The results showed that Lactobacillus plantarum was the predominant species, whereas Lb. brevis was detected in lower amount. In detail, out of 80 isolates 58 were ascribable to Lb. plantarum and 22 to Lb. brevis. Randomly amplified polymorphic DNA-polymerase chain reaction was used to highlight intraspecific variability among Lb. plantarum strains. Interestingly, the cluster analysis evidenced a relationship between different biotypes of Lb. plantarum and their origin, in terms of wine variety. Data acquired in this work show the possibility to obtain several malolactic fermentation starter cultures, composed by different Lb. plantarum biotypes, for their proper use in winemaking processes which are distinctive for each wine

    Effects of conditioned medium from human amniotic mesenchymal tissue cell cultures on prostate cancer cells

    Get PDF
    It has been recently demonstrated that human amniotic mesenchymal tissue cells (hAMTC) derived from term placenta inhibit lymphocyte proliferation and significantly reduce the growth of haemopoietic and non haemopoietic cancer cell lines (HeLa and Saos cells) in vitro (1). The aim of our study was to evaluate the effects of hAMTC-conditioned medium (CM) on two human prostate cancer cells lines: LNCaP, androgen responsive and well differentiated, and PC-3, androgen unresponsive and less differentiated. Cells were grown in their standard culture conditions in the absence or in the presence of various concentrations (0.001–50%) of hAMTC-CM or their own exhausted medium. Cell numbers were determined by using a haemocytometer, after three days. Moreover, E- and N-cadherin expression was evaluated in PC-3 cells cultured in medium with 0.01, 1 or 25% hAMTC-CM by Immunocytochemistry and Western blot analysis. Our findings indicate that hAMTC-CM reduces the growth of both PC-3 and LNCaP cells. The effect is more pronounced in PC-3 cells in which inhibition is about 25% vs control (p<0.001) at a very low concentration (0.001%) and reaches the maximum (about 55% vs control, p<0.001) with the highest concentration used (50%). In LNCaP cells only the highest concentration of hAMTC-CM (50%) inhibits cell proliferation (about 40% vs control, p<0.001). Interestingly, growth of LNCaP cells is reduced by their own exhausted medium, while proliferation of PC-3 cells is not affected by their spent medium. Both E- and N-cadherin expression have been detected at the membrane level in untreated PC-3 cells and the localization does not change in hAMTC-CM-treated cells. Preliminary data obtained by Western blot analysis seem to indicate an increase in both E- and N-cadherin levels. Our findings show that hAMTC-CM reduces prostate cancer cell proliferation in relationship to their androgen sensitivity and modifies the expression levels of adhesion molecules. Experiments are in progress to determine the mechanisms which underlie the observed effects and assess if hAMTC-CM can determine any variation in the differentiation status of prostate cancer cells

    Deep ensemble learning and transfer learning methods for classification of senescent cells from nonlinear optical microscopy images

    Get PDF
    The success of chemotherapy and radiotherapy anti-cancer treatments can result in tumor suppression or senescence induction. Senescence was previously considered a favorable therapeutic outcome, until recent advancements in oncology research evidenced senescence as one of the culprits of cancer recurrence. Its detection requires multiple assays, and nonlinear optical (NLO) microscopy provides a solution for fast, non-invasive, and label-free detection of therapy-induced senescent cells. Here, we develop several deep learning architectures to perform binary classification between senescent and proliferating human cancer cells using NLO microscopy images and we compare their performances. As a result of our work, we demonstrate that the most performing approach is the one based on an ensemble classifier, that uses seven different pre-trained classification networks, taken from literature, with the addition of fully connected layers on top of their architectures. This approach achieves a classification accuracy of over 90%, showing the possibility of building an automatic, unbiased senescent cells image classifier starting from multimodal NLO microscopy data. Our results open the way to a deeper investigation of senescence classification via deep learning techniques with a potential application in clinical diagnosis

    The beneficial effects of physical exercise on visuospatial working memory in preadolescent children

    Get PDF
    The relationship between physical exercise and improvement in specific cognitive domains in children and adolescents who play sport has been recently reported, although the effects on visuospatial abilities have not yet been well explored. This study is aimed at evaluating in school-age children practicing artistic gymnastics the visuospatial memory by using a table version of the Radial Arm Maze (table-RAM) and comparing their performances with those ones who do not play any sport. The visuospatial performances of 14 preadolescent girls practicing artistic gymnastics aged between 7 and 10 years and those of 14 preadolescent girls not playing any sport were evaluated in the table-RAM forced-choice paradigm that allows disentangling short-term memory from working memory abilities. Data showed that the gymnasts obtained better performances than control group mainly in the parameters evaluating working memory abilities, such as within-phase errors and spatial span. Our findings emphasizing the role of physical activity on cognitive performances impel to promote physical exercise in educational and recreational contexts as well as to analyse the impact of other sports besides gymnastics on cognitive functioning

    A novel mutation in NDUFB11 unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia

    Get PDF
    NDUFB11, a component of mitochondrial complex I, is a relatively small integral membrane protein, belonging to the 'supernumerary' group of subunits, but proved to be absolutely essential for the assembly of an active complex I. Mutations in in the X-linked nuclear encoded NDUFB11 gene have recently been discovered in association with two distinct phenotypes, i.e. microphthalmia with linear skin defects and histiocytoid cardiomyopathy. We report on a male with complex I deficiency, caused by a de novo mutation in NDUFB11 and displaying early onset sideroblastic anemia as the unique feature. This is the third report that describes a mutation in NDUFB11 but all are associated to a different phenotype. Our results further expand the molecular spectrum and associated clinical phenotype of NDUFB11 defects
    • …
    corecore