23 research outputs found

    Safety of standardised treatments for haematologic malignancies as regards to testicular endocrine function in children and teenagers

    Get PDF
    Study question: Does standardised treatments used in children and adolescents with haematologic malignancies, including acute lymphoblastic (ALL) or myeloid leukaemia (AML) and non-Hodgkin lymphoma (NHL), affect endocrine function of the developing testes? Summary answer: Therapy of haematologic malignancies do not provoke an overt damage of Sertoli and Leydig cell populations, as revealed by normal levels of anti-Müllerian hormone (AMH) and testosterone, but a mild primary testicular dysfunction may be observed, compensated by moderate gonadotropin elevation, during pubertal development. What is known already: Evidence exists on the deleterious effect that chemotherapy and radiotherapy have on germ cells, and some attention has been given to the effects on Leydig and Sertoli cells of the adult gonads, but information is virtually non-existent on the effects of oncologic treatment on testicular somatic cell components during childhood and adolescence. Study design, size, duration: A retrospective, analytical, observational study included 97 boys with haematological malignancies followed at two tertiary paediatric public hospitals in Buenos Aires, Argentina, between 2002 and 2015. Participants/materials, setting, methods: Clinical records of males aged 1-18 years, referred with the diagnoses of ALL, AML or NHL for the assessment of gonadal function, were eligible. We assessed serum levels of AMH and FSH as biomarkers of Sertoli cell endocrine function and testosterone and LH as biomarkers of Leydig cell function. Main results and the role of chance: All hormone levels were normal in the large majority of patients until early pubertal development. From Tanner stage G3 onwards, while serum AMH and testosterone kept within the normal ranges, gonadotropins reached mildly to moderately elevated values in up to 35.9% of the cases, indicating a compensated Sertoli and/or Leydig cell dysfunction, which generally did not require hormone replacement therapy. Limitations, reasons for caution: Serum inhibin B determination and semen analysis were not available for most patients; therefore, we could not conclude on potential fertility impairment or identify whether primary Sertoli cell dysfunction resulted in secondary depleted spermatogenesis or whether primary germ cell damage impacted Sertoli cell function. Wider implications of the findings: The regimens used in the treatment of boys and adolescents with ALL, AML or NHL in the past two decades seem relatively safe for endocrine testicular function; nonetheless, a mild primary testicular endocrine dysfunction may be observed, usually compensated by slightly elevated gonadotropin secretion by the pituitary in adolescents, and not requiring hormone replacement therapy. No clinically relevant risk factor, such as severity of the disease or treatment protocol, could be identified in association with the compensated endocrine dysfunction. Study funding/competing interest(s): This work was partially funded by grants PIP 11220130100687 of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and PICT 2016-0993 of Fondo para la Investigación Científica y Tecnológica (FONCYT), Argentina. R.A.R., R.P.G. and P.B. have received honoraria from CONICET (Argentina) for technology services using the AMH ELISA. L.A.A. is part-time employee of CSL Behring Argentina. The other authors have no conflicts of interest to disclose.Fil: Grinspon, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Arozarena, María. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Prada, Silvina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Bargman, Graciela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños Pedro Elizalde (ex Casa Cuna); ArgentinaFil: Sanzone, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Morales Bazurto, Marjorie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gutiérrez, Marcela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Bedecarras, Patricia Gladys. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Kannemann, Ana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños Pedro Elizalde (ex Casa Cuna); ArgentinaFil: Elena, Graciela O.. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños Pedro Elizalde (ex Casa Cuna); ArgentinaFil: Gottlieb, Silvia Elisa. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Berenstein, Ariel José. Gobierno de la Ciudad de Buenos Aires. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas; ArgentinaFil: Ropelato, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Bergadá, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Aversa, Luis A.. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Rey, Rodolfo Alberto. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentin

    High Yield Production Process for Shigella Outer Membrane Particles

    Get PDF
    Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria

    Ionic liquids as potential enhancers for transdermal drug delivery

    No full text
    The aim of this study was to verify the effect of several cyclic onium based ionic liquids (ILs), including mono- and dicationic derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO), a dialkyl morpholinium salt and a Brønsted acidic IL, as enhancers of the in vitro transdermal permeation and skin retention of diltiazem through and into hairless rat skin. The drug was used as both the hydrochloride salt (DZHCl) and the free base (DZB) to highlight the relationship between the enhancement effect and the physico-chemical characteristics of the active agent. Permeation tests were carried out using Gummer-type diffusion cells and excised rat skin with a 0.005 M aqueous solution of diltiazem hydrochloride or diltiazem free base with and without the addition of 1% w/w ionic liquids. At the end of the permeation experiments with diltiazem hydrochloride, a suitable extraction procedure allowed for the determination of the drug content retained in the skin. Depending on the ionic liquid structure, a significant enhancement in diltiazem hydrochloride levels in the receiving phase was observed, and the transdermal permeation of the diltiazem free base was markedly increased by treatment with all of the ionic liquids. N-dodecyldabco bromide was the best enhancer for both salified and free base drug forms, even though it showed a certain toxicity. On the other hand, N-methyl-N-decylmorpholinium bromide showed a good balance between enhancer activity and cytotoxicity

    SLAM-associated protein deficiency causes imbalanced early signal transduction and blocks downstream activation in T cells from X-linked lymphoproliferative disease patients

    No full text
    Deficiency of SAP (SLAM (signaling lymphocyte activation molecule)-associated protein) protein is associated with a severe immunodeficiency, the X-linked lymphoproliferative disease (XLP) characterized by an inappropriate immune reaction against Epstein-Barr virus infection often resulting in a fatal clinical course. Several studies demonstrated altered NK and T cell function in XLP patients; however, the mechanisms underlying XLP disease are still largely unknown. Here, we show that non-transformed T cell lines obtained from XLP patients were defective in several activation events such as IL-2 production, CD25 expression, and homotypic cell aggregation when cells were stimulated via T cell antigen receptor (TCR).CD3 but not when early TCR-dependent events were bypassed by stimulation with phorbol 12-myristate 13-acetate/ionomycin. Analysis of proximal T cell signaling revealed imbalanced TCR.CD3-induced signaling in SAP-deficient T cells. Although phospholipase C gamma 1 phosphorylation and calcium response were both enhanced in T cells from XLP patients, phosphorylation of VAV and downstream signal transduction events such as mitogen-activated protein kinase phosphorylation and IL-2 production were diminished. Importantly, reconstitution of SAP expression by retroviral-mediated gene transfer completely restored abnormal signaling events in T cell lines derived from XLP patients. In conclusion, SAP mutation or deletion in XLP patients causes profound defects in T cell activation, resulting in immune deficiency. Moreover, these data provide evidence that SAP functions as an essential integrator in early TCR signal transduction

    Production of a Shigella sonnei Vaccine Based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB.

    No full text
    Recently, we developed a high yield production process for outer membrane particles from genetically modified bacteria, called Generalized Modules of Membrane Antigens (GMMA), and the corresponding simple two step filtration purification, enabling economic manufacture of these particles for use as vaccines. Using a Shigella sonnei strain that was genetically modified to produce penta-acylated lipopolysaccharide (LPS) with reduced endotoxicity and to maintain the virulence plasmid encoding for the immunodominant O antigen component of the LPS, scale up of the process to GMP pilot scale was straightforward and gave high yields of GMMA with required purity and consistent results. GMMA were formulated with Alhydrogel and were highly immunogenic in mice and rabbits. In mice, a single immunization containing 29 ng protein and 1.75 ng of O antigen elicited substantial anti-LPS antibody levels. As GMMA contain LPS and lipoproteins, assessing potential reactogenicity was a key aspect of vaccine development. In an in vitro monocyte activation test, GMMA from the production strain showed a 600-fold lower stimulatory activity than GMMA with unmodified LPS. Two in vivo tests confirmed the low potential for reactogenicity. We established a modified rabbit pyrogenicity test based on the European Pharmacopoeia pyrogens method but using intramuscular administration of the full human dose (100 μg of protein). The vaccine elicited an average temperature rise of 0.5°C within four hours after administration, which was considered acceptable and showed that the test is able to detect a pyrogenic response. Furthermore, a repeat dose toxicology study in rabbits using intramuscular (100 μg/dose), intranasal (80 μg/dose), and intradermal (10 μg/dose) administration routes showed good tolerability of the vaccine by all routes and supported its suitability for use in humans. The S. sonnei GMMA vaccine is now in Phase 1 dose-escalation clinical trials

    Engraftment potential of human amnion and chorion cells derived from term placenta

    No full text
    BACKGROUND: Fetal membranes are tissues of particular interest for several reasons, including their role in preventing rejection of the fetus and their early embryologic origin. which may entail progenitor potential. The immunologic reactivity and the transplantation potential of amnion and chorion cells, however, remain to be elucidated. METHODS: Amnion and chorion cells were isolated from human term placenta and characterized by immunohistochemistry, flow cytometric analysis, and expression profile of relevant genes. The immunomodulatory characteristics of these cells were studied in allogeneic and xenogeneic mixed lymphocyte reactions and their engraftment potential analyzed by transplantation into neonatal swine and rats. Posttransplant chimerism was determined by polymerase chain reaction analysis with probes specific for human DNA. RESULTS: Phenotypic and gene expression studies indicated mesenchymal stem cell-like profiles in both amnion and chorion cells that were positive for neuronal, pulmonary, adhesion, and migration markers. In addition, cells isolated both from amnion and chorion did not induce allogeneic nor xenogeneic lymphocyte proliferation responses and were able to actively suppress lymphocyte responsiveness. Transplantation in neonatal swine and rats resulted in human microchimerism in various organs and tissues. CONCLUSIONS: Human amnion and chorion cells from term placenta can successfully engraft neonatal swine and rats. These results may be explained by the peculiar immunologic characteristics and mesenchymal stem cell-like phenotype of these cells. These findings suggest that amnion and chorion cells may represent an advantageous source of progenitor cells with potential applications in a variety of cell therapy and transplantation procedures

    Antibody responses in mice.

    No full text
    <p>A: vaccinated at 3 week intervals with 1790GAHB containing 29 ng or 1859 ng protein. B: at day 21 following a single injection of 1790GAHB containing 29, 116, 465 or 1859 ng protein. This is the result from a potency study; half the mice were vaccinated with the appropriate doses of a formulation of 1790GAHB prepared from the reference batch of 1790-GMMA stored at -80°C (blue, +) and formulated 2 days before vaccination. The other mice were vaccinated with appropriate doses of the NVGH 1790GAHB vaccine stability batch (red, X). All doses contained the same amount of Alhydrogel in 0.5 mL buffered saline.</p
    corecore