12 research outputs found

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    Stem cell augmented mesh materials: an in vitro and in vivo study

    Get PDF
    INTRODUCTION AND HYPOTHESIS: To test in vitro and in vivo the capability of mesh materials to act as scaffolds for rat-derived mesenchymal stem cells (rMSCs) and to compare inflammatory response and collagen characteristics of implant materials, either seeded or not with rMSCs. METHODS: rMSCs isolated from rat bone marrow were seeded and cultured in vitro on four different implant materials. Implants showing the best rMSC proliferation rate were selected for the in vivo experiment. Forty-eight adult female Sprague-Dawley rats were randomly divided into two treatment groups. The implant of interest-either seeded or not with rMSCs-was laid and fixed over the muscular abdominal wall. Main outcome measures were: in vitro, proliferation of rMSCs on selected materials; in vivo, the occurrence of topical complications, the evaluation of systemic and local inflammatory response and examination of the biomechanical properties of explants. RESULTS: Surgisis and Pelvitex displayed the best cell growth in vitro. At 90 days in the rat model, rMSCs were related to a lower count of neutrophil cells for Pelvitex and a greater organisation and collagen amount for Surgisis. At 7 days Surgisis samples seeded with rMSCs displayed higher breaking force and stiffness. CONCLUSIONS: The presence of rMSCs reduced the systemic inflammatory response on synthetic implants and improved collagen characteristics at the interface between biological grafts and native tissues. rMSCs enhanced the stripping force on biological explants

    Isotope effects on L-H threshold and confinement in tokamak plasmas

    No full text
    The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models

    Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    No full text
    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com

    Erosion and deposition in the JET divertor during the second ITER-like wall campaign

    No full text
    Erosion of plasma-facing materials and successive transport and redeposition of eroded material are crucial processes determining the lifetime of plasma-facing components and the trapped tritium inventory in redeposited material layers. Erosion and deposition in the JET divertor were studied during the second JET ITER-like wall campaign ILW-2 in 2013-2014 by using a poloidal row of specially prepared divertor marker tiles including the tungsten bulk tile 5. The marker tiles were analyzed using elastic backscattering with 3-4.5 MeV incident protons and nuclear reaction analysis using 0.8-4.5 MeV 3He ions before and after the campaign. The erosion/deposition pattern observed during ILW-2 is qualitatively comparable to the first campaign ILW-1 in 2011-2012: deposits consist mainly of beryllium with 5-20 at.% of carbon and oxygen and small amounts of Ni and W. The highest deposition with deposited layer thicknesses up to 30 μm per campaign is still observed on the upper and horizontal parts of the inner divertor. Outer divertor tiles 5, 6, 7 and 8 are net W erosion areas. The observed D inventory is roughly comparable to the inventory observed during ILW-1. The results obtained during ILW-2 therefore confirm the positive results observed in ILW-1 with respect to reduced material deposition and hydrogen isotopes retention in the divertor

    Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets

    No full text
    The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper

    Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    No full text
    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position\u3b1sep ncreases about linearly with the separatrix density normalized to Greenwald density, ne,sep/nGW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum ne,sep/nGW 48 0.4-0.5 at values for \u3b1sep 4822.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix
    corecore