1,516 research outputs found

    Design of experiments for non-manufacturing processes : benefits, challenges and some examples

    Get PDF
    Design of Experiments (DoE) is a powerful technique for process optimization that has been widely deployed in almost all types of manufacturing processes and is used extensively in product and process design and development. There have not been as many efforts to apply powerful quality improvement techniques such as DoE to improve non-manufacturing processes. Factor levels often involve changing the way people work and so have to be handled carefully. It is even more important to get everyone working as a team. This paper explores the benefits and challenges in the application of DoE in non-manufacturing contexts. The viewpoints regarding the benefits and challenges of DoE in the non-manufacturing arena are gathered from a number of leading academics and practitioners in the field. The paper also makes an attempt to demystify the fact that DoE is not just applicable to manufacturing industries; rather it is equally applicable to non-manufacturing processes within manufacturing companies. The last part of the paper illustrates some case examples showing the power of the technique in non-manufacturing environments

    The reaction of Pseudomonas nitrite reductase and nitrite. A stopped-flow and EPR study.

    Get PDF
    The reaction between reduced Pseudomonas nitrite reductase and nitrite has been studied by stopped-flow and rapid-freezing EPR spectroscopy. The interpretation of the kinetics at pH 8.0 is consistent with the following reaction mechanism (where k1 and k3 much greater than k2). [formula: see text] The bimolecular step (Step 1) is very fast, being lost in the dead time of a rapid mixing apparatus; the stoichiometry of the complex has been estimated to correspond to one NO2- molecule/heme d1. The final species is the fully reduced enzyme with NO bound to heme d1; and at all concentrations of nitrite, there is no evidence for dissociation of NO or for further reduction of NO to N2O. Step 2 is assigned to an internal electron transfer from heme c to reduced NO-bound heme d1 occurring with a rate constant of 1 s-1; this rate is comparable to the rate of internal electron transfer previously determined when reducing the oxidized enzyme with azurin or cytochrome c551. When heme d1 is NO-bound, the rate at which heme c can accept electrons from ascorbate is remarkably increased as compared to the oxidized enzyme, suggesting an increase in the redox potential of the latter heme

    B-physics computations from Nf=2 tmQCD

    Get PDF
    We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    BLUFF-BODIES VORTEX SHEDDING SUPRESSION BY DIRECT NUMERICAL SIMULATION

    Get PDF
    Vortex shedding is responsible for harmful vibrations on immersed structures and for increasing their drag coefficients. Thus vortex shedding suppression is highly interesting in order of decrease maintenance costs of standing structures and fuel costs on moving ones. Vortex shedding suppression is here achieved with the use of splitter plates by means of numerical simulations at a low Reynolds range, Re 100 and 160. For this purpose it has been used a high order finite difference method in association with a virtual boundary method, responsible for the obstacles representation. The use of this novel numerical method showed a great concordance with experimental results by means of low computational costs

    Constraints on new physics from the quark mixing unitarity triangle

    Full text link
    The status of the Unitarity Triangle beyond the Standard Model including the most recent results on Delta m_s, on dilepton asymmetries and on width differences is presented. Even allowing for general New Physics loop contributions the Unitarity Triangle must be very close to the Standard Model result. With the new measurements from the Tevatron, we obtain for the first time a significant constraint on New Physics in the B_s sector. We present the allowed ranges of New Physics contributions to Delta F=2 processes, and of the time-dependent CP asymmetry in B_s to J/Psi phi decays.Comment: 5 pages, 4 figures. v2: numerical error in Delta Gamma_s/Gamma_s corrected. Plots and tables updated. v3: update after ICHEP06, final version published in Phys Rev Letter

    Update of the Unitarity Triangle Analysis

    Full text link
    We present the status of the Unitarity Triangle Analysis (UTA), within the Standard Model (SM) and beyond, with experimental and theoretical inputs updated for the ICHEP 2010 conference. Within the SM, we find that the general consistency among all the constraints leaves space only to some tension (between the UTA prediction and the experimental measurement) in BR(B -> tau nu), sin(2 beta) and epsilon_K. In the UTA beyond the SM, we allow for New Physics (NP) effects in (Delta F)=2 processes. The hint of NP at the 2.9 sigma level in the B_s-\bar B_s mixing turns out to be confirmed by the present update, which includes the new D0 result on the dimuon charge asymmetry but not the new CDF measurement of phi_s, being the likelihood not yet released.Comment: 4 pages, 2 figures, Proceedings of the 35th International Conference of High Energy Physics - ICHEP2010 (July 22-28, 2010, Paris
    • …
    corecore