9 research outputs found

    Two Different Aspects of Genomics: the Construction of a High-Density Radiation Hybrid Map and the Study of the Involvement of Mirnas in the Mammary Gland

    Get PDF
    In questa tesi vengono affrontati due diversi tipi di studio. Il primo tratta della costruzione di una mappa di ibridi bovino-criceto di radiazione di seconda generazione tramite la tipizzazione di un pannello RH, fornito dal Roslin Institut, con un set di Est non ridondanti provenienti da una libreria di cloni a cDNA di cervello bovino. Il secondo soggetto è il coinvolgimento dei microRNA, una nuova classe di piccoli RNA regolatori non codificanti, nello sviluppo della ghiandola mammaria. E' stata analizzata l'espressione di un set di microRNA noti in letteratura nei diversi stadi dello sviluppo dell'organo e sono state costruite librerie di cloni a cDNA di potenziali microRNA a partire da diversi stadi del ciclo dell'organo.In this thesis two different subjects have been studied. The first is the construction of a second generation high-density RH map of the bovine using the RH panel of the Roslin Institute. The panel have been characterized by PCR with a set of non-redundant EST chosen from a cDNA library of bovine brain. The second work treats about the involvement of miRNAs in the development of mammary gland. A set of 25 known miRNAs have been chosen and their expression have been examined in the different stages of mammary gland development. Libraries of potential miRNAs have been constructed from different stages of mammary gland development and some miRNAs have been validated

    Identification and characterization of new miRNAs cloned from normal mouse mammary gland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small non-coding RNAs that have been found to play important roles in silencing target genes and that are involved in the regulation of various normal cellular processes. Until now their implication in the mammary gland biology was suggested by few studies mainly focusing on pathological situations allowing the characterization of miRNAs as markers of breast cancer tumour classes. If in the normal mammary gland, the expression of known miRNAs has been studied in human and mice but the full repertoire of miRNAs expressed in this tissue is not yet available.</p> <p>Results</p> <p>To extend the repertoire of mouse mammary gland expressed miRNAs, we have constructed several libraries of small miRNAs allowing the cloning of 455 sequences. After bioinformatics' analysis, 3 known miRNA (present in miRbase) and 33 new miRNAs were identified. Expression of 24 out of the 33 has been confirmed by RT-PCR. Expression of none of them was found to be mammary specific, despite a tissue-restricted distribution of some of them. No correlation could be established between their expression pattern and evolutionary conservation. Six of them appear to be mouse specific. In several cases, multiple potential precursors of miRNA were present in the genome and we have developed a strategy to determine which of them was able to mature the miRNA.</p> <p>Conclusion</p> <p>The cloning approach has allowed improving the repertoire of miRNAs in the mammary gland, an evolutionary recent organ. This tissue is a good candidate to find tissue-specific miRNAs and to detect miRNA specific to mammals. We provide evidence for 24 new miRNA. If none of them is mammary gland specific, a few of them are not ubiquitously expressed. For the first time 6 mouse specific miRNA have been identified.</p

    A second generation radiation hybrid map to aid the assembly of the bovine genome sequence

    Get PDF
    BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6× coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6× bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6× sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information

    MicroRNA involvement in mammary gland development and breast cancer

    No full text
    MicroRNA (miRNA) are small non-coding RNA that post-transcriptionally regulate gene expression. In humans, miRNA genes may account for 2 to 3% of the total number of genes. Although the biological functions of most miRNA are unknown, their importance for development, cell proliferation, cell death, and morphogenesis has been demonstrated in several species. One could thus speculate that miRNA should be involved in the regulation of one of the organs that can undergo cycles of cell division, differentiation and dedifferentiation in the adult, the mammary gland. In this paper we summarise several reports dealing with the potential implication of miRNA in the mammary gland, most of them focussed on pathological situations, such as the appearance of breast cancer. These data suggest an implication of miRNA on mammary gland biology. However, direct evidence of this is still lacking. Expression profile analysis of miRNA during the normal mammary gland development could help in addressing this question and in identifying miRNA potentially involved. To this aim, we undertook such an analysis on mouse mammary gland at different stages (virgin, pregnancy, lactation and involution) and will present our preliminary results
    corecore