934 research outputs found

    Cooper pairing and superconductivity on a spherical surface

    Full text link
    Electrons in a multielectron bubble in helium form a spherical, two-dimensional system coupled to the ripplons at the bubble surface. The electron-ripplon coupling, known to lead to polaronic effects, is shown to give rise also to Cooper pairing. A Bardeen-Cooper-Schrieffer (BCS) Hamiltonian arises from the analysis of the electron-ripplon interaction in the bubble, and values of the coupling strength are obtained for different bubble configurations. The BCS Hamiltonian on the sphere is analysed using the Richardson method. We find that although the typical ripplon energies are smaller than the splitting between electronic levels, a redistribution of the electron density over the electronic levels is energetically favourable as pairing correlations can be enhanced. The density of states of the system with pairing correlations is derived. No gap is present, but the density of states reveals a strong step-like increase at the pair-breaking energy. This feature of the density of states should enable the unambiguous detection of the proposed state with pairing correlations in the bubble, through either capacitance spectroscopy or tunneling experiments, and allow to map out the phase diagram of the electronic system in the bubble.Comment: 25 pages, 7 figures, 1 tabl

    Wigner lattice of ripplopolarons in a multielectron bubble in helium

    Full text link
    The properties of ripplonic polarons in a multielectron bubble in liquid helium are investigated on the basis of a path-integral variational method. We find that the two-dimensional electron gas can form deep dimples in the helium surface, or ripplopolarons, to solidify as a Wigner crystal. We derive the experimental conditions of temperature, pressure and number of electrons in the bubble for this phase to be realized. This predicted state is distinct from the usual Wigner lattice of electrons, in that it melts by the dissociation of the ripplopolarons, when the electrons shed their localizing dimple as the pressure on the multielectron bubble drops below a critical value.Comment: 19 pages, 4 figure

    The effect of pressure on statics, dynamics and stability of multielectron bubbles

    Full text link
    The effect of pressure and negative pressure on the modes of oscillation of a multi-electron bubble in liquid helium is calculated. Already at low pressures of the order of 10-100 mbar, these effects are found to significantly modify the frequencies of oscillation of the bubble. Stabilization of the bubble is shown to occur in the presence of a small negative pressure, which expands the bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review Letter

    Cold Collision Frequency Shift in Two-Dimensional Atomic Hydrogen

    Full text link
    We report a measurement of the cold collision frequency shift in atomic hydrogen gas adsorbed on the surface of superfluid 4He at T<=90 mK. Using two-photon electron and nuclear magnetic resonance in 4.6 T field we separate the resonance line shifts due to the dipolar and exchange interactions, both proportional to surface density sigma. We find the clock shift Delta v_c = -1.0(1)x10^-7 Hz cm^-2 x sigma, which is about 100 times smaller than the value predicted by the mean field theory and known scattering lengths in the 3D case.Comment: 4 pages, 3 figure

    Vortices on a superconducting nanoshell: phase diagram and dynamics

    Full text link
    In superconductors, the search for special vortex states such as giant vortices focuses on laterally confined or nanopatterned thin superconducting films, disks, rings, or polygons. We examine the possibility to realize giant vortex states and states with non-uniform vorticity on a superconducting spherical nanoshell, due to the interplay of the topology and the applied magnetic field. We derive the phase diagram and identify where, as a function of the applied magnetic field, the shell thickness and the shell radius, these different vortex phases occur. Moreover, the curved geometry allows these states (or a vortex lattice) to coexist with a Meissner state, on the same curved film. We have examined the dynamics of the decay of giant vortices or states with non-uniform vorticity into a vortex lattice, when the magnetic field is adapted so that a phase boundary is crossed.Comment: 21 pages, 9 figure

    MODELO BIDIMENSIONAL DE RIESGOS DEL MANTENIMIENTO DE SISTEMAS INTEGRADOS DE GESTIÓN (ERP)

    Get PDF
    La adopción y expansión de las Tecnologías de la Información y la Comunicación en el ámbito empresarial se está produciendo a gran velocidad. De la mano de las más innovadoras TIC y de los sistemas informáticos, surgen y se desarrollan los sistemas ERP. Éstos han sido implantados por empresas de todo el mundo. Tras su implantación, comienza su mantenimiento. Para que el resultado de estos proyectos sea satisfactorio, los riesgos que lo afectan tienen que ser gestionados. Una pobre gestión de estos riesgos, con frecuencia origina fallos en el sistema, lo que hace que las compañías tengan que asumir altas pérdidas. Para gestionar adecuadamente los riesgos, los profesionales deben comenzar identificándolos y clasificándolos. Para apoyar su labor, hemos realizado un estudio formal de los riesgos que afectan al mantenimiento de ERPs. La investigación finaliza con la elaboración de un Modelo de dos dimensiones compuesto por los riesgos identificados en la literatura

    A diffusion Monte Carlo study of small para-Hydrogen clusters

    Get PDF
    Ground state energies and chemical potentials of parahydrogen clusters are calculated from 3 to 40 molecules using the diffusion Monte Carlo technique with two different pH2-pH2 interactions. This calculation improves a previous one by the inclusion of three-body correlations in the importance sampling, by the time step adjustement and by a better estimation of the statistical errors. Apart from the cluster with 13 molecules, no other magic clusters are predicted, in contrast with path integral Monte Carlo results
    corecore