8,882 research outputs found

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    High-momentum dynamic structure function of liquid 3He-4He mixtures: a microscopic approach

    Get PDF
    The high-momentum dynamic structure function of liquid 3He-4He mixtures has been studied introducing final state effects. Corrections to the impulse approximation have been included using a generalized Gersch-Rodriguez theory that properly takes into account the Fermi statistics of 3He atoms. The microscopic inputs, as the momentum distributions and the two-body density matrices, correspond to a variational (fermi)-hypernetted chain calculation. The agreement with experimental data obtained at q=23.1q=23.1 \AA1^{-1} is not completely satisfactory, the comparison being difficult due to inconsistencies present in the scattering measurements. The significant differences between the experimental determinations of the 4He condensate fraction and the 3He kinetic energy, and the theoretical results, still remain unsolved.Comment: 18 pages, 11 figures, to appear in Phys. Rev.

    Phonon-like and single particle dynamics in liquid lithium

    Full text link
    The dynamic structure factor, S(Q,E), of liquid lithium (T=475 K) has been determined by inelastic x-ray scattering (IXS) in the momentum transfer region (Q = 1.4-110 nm-1). These data allow to observe how, in a simple liquid, a phonon-like collective mode evolves towards the single particle dynamics. As a function of Q, one finds: i) at low Q's, a sound mode with a positive dispersion of the sound velocity, ii) at intermediate Q's, excitations whose energy oscillates similarly to phonons in the crystal Brillouin zones, and iii) at high Q's, the S(Q,E) approaches a Gaussian shape, indicating that the single particle dynamics has been reached.Comment: 3 pages and 5 figure

    Fast algorithm for calculating two-photon absorption spectra

    Full text link
    We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential using the real-time real-space higher-order difference method. By introducing random vector averaging for the intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two one-dimensional integrals. This allows the reduction of the computation load down to the same order as that for the linear response function. The relative advantage of the method compared to the straightforward multi-dimensional time integration is greater for the calculation of non-linear response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March, 199

    Frustration induced Raman scattering in CuGeO_3

    Full text link
    We present experimental data for the Raman intensity in the spin-Peierls compound CuGeO_3 and theoretical calculations from a one-dimensional frustrated spin model. The theory is based on (a) exact diagonalization and (b) a recently developed solitonic mean field theory. We find good agreement between the 1D-theory in the homogeneous phase and evidence for a novel dimerization of the Raman operator in the spin-Peierls state. Finally we present evidence for a coupling between the interchain exchange, the spin-Peierls order parameter and the magnetic excitations along the chains.Comment: Phys. Rev. B, Rapid Comm, in Pres

    Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds

    Get PDF
    Human skin wounds (66) inflicted between 20 h and 7 months prior to biopsy were studied. In order to identify the type of cellular differentiation of the fibroblastic cells in the granulation tissue, alpha-smooth muscle actin and desmin were immunohistochemically localized. The value of any presumed time-dependent appearance and/or disappearance of positively stained cells was tested for the estimation of wound age. In skin specimens with a wound age less than 5 days (n =15) no typical granulation tissue had developed and no alpha-actin-positive myofibroblasts could be detected. The first appearance of positively reacting myofibroblasts was noted in a 5-day-old wound. In 57% of the lesions with a wound age between 5 and 31 days (25 out of 44 cases) typical granulation tissue formation was present and myofibroblasts with positive reaction for alpha-smooth muscle actin could be identified. Numerous positively reacting cells could generally be found in wounds aged between 16 and 31 days, but also in wounds less than 16 days old. In 29% of the cases with a wound age of more than 31 days (2 out of 7 cases) alpha-sma-positive myofibroblasts also occured. Fibroblastic cells positive for desmin could not be seen at all in our series. Our results demonstrate the appearance of alpha-sma-positive myofibroblasts with the initial formation of typical granulation tissue in human skin lesions as early as approximately 5 days after wounding. In contrast to recent experimental results these cells remained detectable in wounds aged more than 2 months in some cases. The immunohistochemical detection of actin-positive cells, therefore, demonstrates whether an unknown skin wound is aged approximately 5 days or more. Even though a time-dependent decrease of myofibroblasts in human granulation tissue after 31 days in human wounds seems probable, the extended presence (up to about 2 months) of these cells allows no further exact age determination of older wounds

    Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice

    Get PDF
    We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor in B-cell development by transgenic complementation of Rag-1 deficient (Rag-1⁻) mice. Complementation with a membrane µ heavy chain (µHC) gene allows progression of developmentally arrested Rag-1⁻ pro-B-cells to the small pre-B cell stage, whereas the introduction of independently integrated µHC and κ light chain (κLC) transgenes promotes the appearance of peripheral lymphocytes which, however, remain unresponsive to external stimuli. Complete reconstitution of the B-cell lineage and the emergence of functionally nature Rag-1⁻ peripheral B cells is achieved by the introduction of cointegrated heavy and light chain transgenes encoding an anti-H-2^k antibody. This experimental system demonstrates the competence of the µHC and κLC to direct and regulate the sequential stages of B-cell differentiation, defines the time at which negative selection of self-reactive B cells occurs, and shows that elimination of these cells occurs equally well in the absence of Rag-1 as in its presence. These data also support the hypothesis that Rag-1 directly participates in the V(D)J recombination process
    corecore