7,532 research outputs found
Chebyshev approach to quantum systems coupled to a bath
We propose a new concept for the dynamics of a quantum bath, the Chebyshev
space, and a new method based on this concept, the Chebyshev space method. The
Chebyshev space is an abstract vector space that exactly represents the
fermionic or bosonic bath degrees of freedom, without a discretization of the
bath density of states. Relying on Chebyshev expansions the Chebyshev space
representation of a bath has very favorable properties with respect to
extremely precise and efficient calculations of groundstate properties, static
and dynamical correlations, and time-evolution for a great variety of quantum
systems. The aim of the present work is to introduce the Chebyshev space in
detail and to demonstrate the capabilities of the Chebyshev space method.
Although the central idea is derived in full generality the focus is on model
systems coupled to fermionic baths. In particular we address quantum impurity
problems, such as an impurity in a host or a bosonic impurity with a static
barrier, and the motion of a wave packet on a chain coupled to leads. For the
bosonic impurity, the phase transition from a delocalized electron to a
localized polaron in arbitrary dimension is detected. For the wave packet on a
chain, we show how the Chebyshev space method implements different boundary
conditions, including transparent boundary conditions replacing infinite leads.
Furthermore the self-consistent solution of the Holstein model in infinite
dimension is calculated. With the examples we demonstrate how highly accurate
results for system energies, correlation and spectral functions, and
time-dependence of observables are obtained with modest computational effort.Comment: 18 pages, 13 figures, to appear in Phys. Rev.
Considerations on the quantum double-exchange Hamiltonian
Schwinger bosons allow for an advantageous representation of quantum
double-exchange. We review this subject, comment on previous results, and
address the transition to the semiclassical limit. We derive an effective
fermionic Hamiltonian for the spin-dependent hopping of holes interacting with
a background of local spins, which is used in a related publication within a
two-phase description of colossal magnetoresistant manganites.Comment: 7 pages, 3 figure
Mantle Layering across Central South America
Imaging of seismic velocity discontinuities along a 3000 km profile across central South America at 20°S suggests that the depth variations of the 410-km (d410) and 660-km (d660) discontinuities are closely associated with the high-velocity Nazca slab and juxtaposed low-velocity oceanic mantle beneath the slab. The mantle transition zone thickness ranges from 220 km in the oceanic mantle to 270 km in a 600-km-wide area occupied by the deflected Nazca slab. The slab deflection has also been suggested by previous studies of seismic tomography and seismicity. This 50 km difference in the thickness corresponds to a lateral temperature variation of about 370°C between the two areas. The depth of d410 shows a gradual eastward decrease of about 10 km along the profile, corresponding to a temperature that is about 75°C cooler to the east. This variation is probably related to changes in the upper mantle geotherms associated with the transition from tectonically active to stable upper mantle. A low-velocity anomaly in the upper mantle and mantle transition zone beneath eastern Brazil, previously detected by seismic tomography and interpreted as a fossil plume, produced no detectable perturbation in transition zone thickness. It is thus unlikely to extend to the transition zone or alternatively is not thermal in origin. Finally, we have observed several possible second-order discontinuities at the depths of 230, 500, 600, 840, and 915 km beneath the western part of the study area
Southern African Crustal Evolution and Composition: Constraints from Receiver Function Studies
Stacking of approximately 1500 radial receiver functions recorded at about 80 broadband seismic stations deployed in southern Africa reveals systematic spatial variations in the ratio of crustal P and S wave velocities (Φ), crustal thickness (H), and the amplitude of the converted Moho phases (R). The eastern Zimbabwe and the southern Kaapvaal cratons are characterized by small H (~38 km), small Φ (~1.73), and large R (~0.15) values, suggesting that the relatively undisturbed Archean crust beneath southern Africa is separated from the mantle by a sharp Moho and is felsic in composition. The Limpopo belt, which was created by a collisional event at 2.7 Ga, displays large H (~43 km) but similar Φ and R values relative to the cratonic areas. The Bushveld Mafic Intrusion Complex and its surrounding areas show large Φ (~1.78), large H (~43 km), and small R (~0.11) values, reflecting the intrusion of mafic material into the original crust as a result of the Bushveld event at 2.05 Ga. Excluding the Bushveld, the spatially consistent and age-independent low Φ accentuate the difference between felsic crustal composition and more mafic island arcs that are thought to be the likely source of continental material. Within such an island arc model, our data, combined with xenolith data excluding mantle delamination in cratonic environments, suggest that the modification to a felsic composition (e.g., by the partial melting of basalt and removal of residue by delamination) is restricted to have occurred during the collision between the arcs and the continent
Description of recent large- neutron inclusive scattering data from liquid He
We report dynamical calculations for large- structure functions of liquid
He at =1.6 and 2.3 K and compare those with recent MARI data. We extend
those calculations far beyond the experimental range q\le 29\Ain in order to
study the approach of the response to its asymptotic limit for a system with
interactions having a strong short-range repulsion. We find only small
deviations from theoretical behavior, valid for smooth . We repeat an
extraction by Glyde et al of cumulant coefficients from data. We argue that
fits determine the single atom momentum distribution, but express doubt as to
the extraction of meaningful Final State Interaction parameters.Comment: 37 pages, 13 postscript fig
K-shell dielectronic resonances in photoabsorption: differential oscillator strengths for Li-like C IV, O VI, and Fe XXIV
Recently X-ray photoabsorption in KLL resonances of O VI was predicted
[Pradhan, Astrophys.J. Lett. 545, L165 (2000)], and detected by the Chandra
X-ray Observatory [Lee et al, Astrophys. J. {\it Lett.}, submitted].
The required resonance oscillator strengths f_r, are evaluated in terms of
the differential oscillator strength df/de that relates bound and continuum
absorption. We present the f_r values from radiatively damped and undamped
photoionization cross sections for Li-like C,O, and Fe calculated using
relativistic close coupling Breit-Pauli R-matrix method. The KLL resonances of
interest here are: 1s2p (^3P^o) 2s [^4P^o_{1/2,3/2}, ^2P^o_{1/2,3/2}] and 1s2p
(^1P^o) 2s [^2P^o_{1/2,3/2}]. The KLL photoabsorption resonances in Fe XXIV are
fully resolved up to natural autoionization profiles for the first time. It is
demonstrated that the undamped f_r independently yield the resonance radiative
decay rates, and thereby provide a precise check on the resolution of
photoionization calculations in general. The predicted photoabsorption features
should be detectable by the X-ray space observatories and enable column
densities in highly ionized astrophysical plasmas to be determined from the
calculated f_r. The dielectronic satellites may appear as redward broadening of
resonances lines in emission and absorption.Comment: 9 pages, 2 figurs, Phys. Rev. A, Rapid Communication (submitted
An inquiry-based learning approach to teaching information retrieval
The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use
them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were
assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal
An efficient scheme for numerical simulations of the spin-bath decoherence
We demonstrate that the Chebyshev expansion method is a very efficient
numerical tool for studying spin-bath decoherence of quantum systems. We
consider two typical problems arising in studying decoherence of quantum
systems consisting of few coupled spins: (i) determining the pointer states of
the system, and (ii) determining the temporal decay of quantum oscillations. As
our results demonstrate, for determining the pointer states, the
Chebyshev-based scheme is at least a factor of 8 faster than existing
algorithms based on the Suzuki-Trotter decomposition. For the problems of
second type, the Chebyshev-based approach has been 3--4 times faster than the
Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide
spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure
- …