3,497 research outputs found
Recommended from our members
Sun exposure drives Antarctic cryptoendolithic community structure and composition
AbstractThe harsh environmental conditions of the ice-free regions of Continental Antarctica are considered one of the closest Martian analogues on Earth. There, rocks play a pivotal role as substratum for life and endolithism represents a primary habitat for microorganisms when external environmental conditions become incompatible with active life on rock surfaces. Due to the thermal inertia of rock, the internal airspace of lithic substratum is where microbiota find a protected and buffered microenvironment, allowing life to spread throughout these regions with extreme temperatures and low water availability. The high degree of adaptation and specialization of the endolithic communities makes them highly resistant but scarsely resilient to any external perturbation and thus, any shifts in microbial community composition may serve as early-alarm systems of environmental perturbation, including climate change.Previous research concluded that altitude and distance from sea do not play as driving factors in shaping microbial abundance and diversity, while sun exposure was hypothesized as significant parameter influencing endolithic settlement and development. This study aims to explore our hypothesis that changes in sun exposure translate to shifts in community composition and abundances of main biological compartments (fungi, algae and bacteria) in the Antarctic cryptoendolithic communities. We performed a preliminary molecular survey, based on DGGE and qPCR tecniques, of 48 rocks with varying sun exposure, collected in Victoria Land along an altitudinal transect from 834 to 3100 m a.s.l.Our findings demonstrate that differences in sun radiation between north and south exposure influence temperature of rocks surface, availability of water and metabolic activity and also have significant impact on community composition and microbial abundance
Draft Genome Sequence of the Yeast Rhodotorula sp. Strain CCFEE 5036, Isolated from McMurdo Dry Valleys, Antarctica.
A draft genome sequence was assembled and annotated of the basidiomycetous yeast Rhodotorula sp. strain CCFEE 5036, isolated from Antarctic soil communities. The genome assembly is 19.07 megabases and encodes 6,434 protein-coding genes. The sequence will contribute to understanding the diversity of fungi inhabiting polar regions
A Computational Theory for the Learning of Equivalence Relations
Equivalence relations (ERs) are logical entities that emerge concurrently with
the development of language capabilities. In this work we propose a
computational model that learns to build ERs by learning simple conditional
rules. The model includes visual areas, dopaminergic, and noradrenergic
structures as well as prefrontal and motor areas, each of them modeled as a
group of continuous valued units that simulate clusters of real neurons. In the
model, lateral interaction between neurons of visual structures and top-down
modulation of prefrontal/premotor structures over the activity of neurons in
visual structures are necessary conditions for learning the paradigm. In terms
of the number of neurons and their interaction, we show that a minimal
structural complexity is required for learning ERs among conditioned stimuli.
Paradoxically, the emergence of the ER drives a reduction in the number of
neurons needed to maintain those previously specific stimulusâresponse
learned rules, allowing an efficient use of neuronal resources
Co-digestion of macroalgae for biogas production: an LCA-based environmental evaluation
Algae represent a favourable and potentially sustainable source of biomass for bioenergy-based industrial pathways in the future.
The study, performed on a real pilot plant implemented in Augusta (Italy) within the frame of the BioWALK4Biofuels project,
aims to figure out whether seaweed (macroalgae) cultivated in near-shore open ponds could be considered a beneficial aspect as a
source of biomass for biogas production within the co-digestion with local agricultural biological waste. The LCA results
confirm that the analysed A and B scenarios (namely the algae-based co-digestion scenario and agricultural mix feedstock
scenario) present an environmental performance more favourable than that achieved with conventional non-renewable-based
technologies (specifically natural gas - Scenario C). Results show that the use of seaweed (Scenario A) represent a feasible
solution in order to replace classical biomass used for biofuel production from a land-based feedstock. The improvement of the
environmental performances is quantifiable on 10% respect to Scenario B, and 38 times higher than Scenario
SMAUG: a new technique for the deprojection of galaxy clusters
This paper presents a new technique for reconstructing the spatial
distributions of hydrogen, temperature and metal abundance of a galaxy cluster.
These quantities are worked out from the X-ray spectrum, modeled starting from
few analytical functions describing their spatial distributions. These
functions depend upon some parameters, determined by fitting the model to the
observed spectrum. We have implemented this technique as a new model in the
XSPEC software analysis package. We describe the details of the method, and
apply it to work out the structure of the cluster A1795. We combine the
observation of three satellites, exploiting the high spatial resolution of
Chandra for the cluster core, the wide collecting area of XMM-Newton for the
intermediate regions and the large field of view of Beppo-SAX for the outer
regions. We also test the validity and precision of our method by i) comparing
its results with those from a geometrical deprojection, ii) examining the
spectral residuals at different radii of the cluster and iii) reprojecting the
unfolded profiles and comparing them directly to the measured quantities. Our
analytical method yields the parameters defining the spatial functions directly
from the spectra. Their explicit knowledge allows a straightforward derivation
of other indirect physical quantities like the gravitating mass, as well as a
fast and easy estimate of the profiles uncertainties.Comment: 24 pages, 11 figures, 3 tables; emulateapj; accepted for publication
in the Astrophysical Journa
Metagenomes in the Borderline Ecosystems of the Antarctic Cryptoendolithic Communities.
Antarctic cryptoendolithic communities are microbial ecosystems dwelling inside rocks of the Antarctic desert. We present the first 18 shotgun metagenomes from these communities to further characterize their composition, biodiversity, functionality, and adaptation. Future studies will integrate taxonomic and functional annotations to examine the pathways necessary for life to evolve in the extremes
Bang-Bang Control of Feeding: Role of Hypothalamic and Satiety Signals
Rats, people, and many other omnivores eat in meals rather than continuously. We show by experimental test that eating in meals is regulated by a simple bang-bang control system, an idea foreshadowed by Le Magnen and many others, shown by us to account for a wide range of behavioral data, but never explicitly tested or tied to neurophysiological facts. The hypothesis is simply that the tendency to eat rises with time at a rate determined by satiety signals. When these signals fall below a set point, eating begins, in onâoff fashion. The delayed sequelae of eating increment the satiety signals, which eventually turn eating off. Thus, under free conditions, the organism eats in bouts separated by noneating activities. We report an experiment with rats to test novel predictions about meal patterns that are not explained by existing homeostatic approaches. Access to food was systematically but unpredictably interrupted just as the animal tried to start a new meal. A simple bang-bang model fits the resulting meal-pattern data well, and its elements can be identified with neurophysiological processes. Hypothalamic inputs can provide the set point for longer-term regulation carried out by a comparator in the hindbrain. Delayed gustatory and gastrointestinal aftereffects of eating act via the nucleus of the solitary tract and other hindbrain regions as neural feedback governing short-term regulation. In this way, the model forges real links between a functioning feedback mechanism, neuroâhormonal data, and both short-term (meals) and long-term (eating-rate regulation) behavioral data
Radiative cooling, heating and thermal conduction in M87
The crisis of the standard cooling flow model brought about by Chandra and
XMM-Newton observations of galaxy clusters, has led to the development of
several models which explore different heating processes in order to assess if
they can quench the cooling flow. Among the most appealing mechanisms are
thermal conduction and heating through buoyant gas deposited in the ICM by
AGNs. We combine Virgo/M87 observations of three satellites (Chandra,
XMM-Newton and Beppo-SAX) to inspect the dynamics of the ICM in the center of
the cluster. Using the spectral deprojection technique, we derive the physical
quantities describing the ICM and determine the extra-heating needed to balance
the cooling flow assuming that thermal conduction operates at a fixed fraction
of the Spitzer value. We assume that the extra-heating is due to buoyant gas
and we fit the data using the model developed by Ruszkowski and Begelman
(2002). We derive a scale radius for the model of kpc, which is
comparable with the M87 AGN jet extension, and a required luminosity of the AGN
of a erg s, which is comparable to the observed AGN
luminosity. We discuss a scenario where the buoyant bubbles are filled of
relativistic particles and magnetic field responsible for the radio emission in
M87. The AGN is supposed to be intermittent and to inject populations of
buoyant bubbles through a succession of outbursts. We also study the X-ray cool
component detected in the radio lobes and suggest that it is structured in
blobs which are tied to the radio buoyant bubbles.Comment: 25 pages, 10 figures and 2 tables. Accepted for publication in Ap
- âŠ