2,418 research outputs found

    Comment on the paper by Y.Komura and Y.Okabe [arXiv:1011.3321]

    Get PDF
    We point out that the claim of strong universality in the paper J.Phys. A 44, 015002, arXiv:1011.3321 is incorrect, as it contradicts known rigorous results.Comment: submitted to J.Phys.

    Frame Combination Techniques for Ultra High-Contrast Imaging

    Full text link
    We summarize here an experimental frame combination pipeline we developed for ultra high-contrast imaging with systems like the upcoming VLT SPHERE instrument. The pipeline combines strategies from the Drizzle technique, the Spitzer IRACproc package, and homegrown codes, to combine image sets that may include a rotating field of view and arbitrary shifts between frames. The pipeline is meant to be robust at dealing with data that may contain non-ideal effects like sub-pixel pointing errors, missing data points, non-symmetrical noise sources, arbitrary geometric distortions, and rapidly changing point spread functions. We summarize in this document individual steps and strategies, as well as results from preliminary tests and simulations.Comment: 9 pages, 4 figures, SPIE conference pape

    Ultra-light disposable radio probes for atmospheric monitoring

    Get PDF
    Representation of clouds remains a latent ambiguity for weather forecasting and climate models since their characteristics depends on multidisciplinary processes in a wide range of natural scales, from the collision of micron-sized droplets and particles to the thousand-of-meters scale of airflow dynamics. Within the Horizon 2020 Innovative Training Network Cloud-MicroPhysics-Turbulence-Telemetry (ITN-COMPLETE), the development of ultra-small light disposable radio probes for fluctuation-inside-cloudsmonitoring is promoted and financed. Being light-weighted (less than 20 grams), the probes will have a fluid-dynamic behavior to allow them to “float” inside warm clouds after been released by an aircraft or an Unmanned Aerial Vehicle (UAV). Each disposable probe is equipped with compact size microprocessors (presently the first prototype uses Arduino© Nano), controllers and a set of sensors for the measurement of atmospheric parameters such as velocity, acceleration, pressure, temperature and humidity variations. All probes are part of the Internet-of-Things (IoT) world. In fact, while floating, they collect, store and then send the coded information to a base station located at the ground through a dedicated radio transmission link. It is to be noted that long-range communication link (10 km) should be assured with low power consumption technology: a network based on the Long Range Wide Area Network (LoRaWAN© protocol) to connect and exchange data within the end-modules and the base station is the potential adopted solution. As far as possible biocompatible elements within the mini ultra-light radio probes will be used to avoid any environmental pollution

    Architecture of Computing Systems - ARCS 2011

    Get PDF
    Architecture of Computing Systems - ARCS 2011, 24th International Conference, Como, Italy, February 24-25, 2011. Proceeding

    A system-level methodology for fast multi-objective design space exploration

    Get PDF
    corecore