73 research outputs found

    Focal HIFU therapy for anterior compared to posterior prostate cancer lesions.

    Get PDF
    OBJECTIVE To compare cancer control in anterior compared to posterior prostate cancer lesions treated with a focal HIFU therapy approach. MATERIALS AND METHODS In a prospectively maintained national database, 598 patients underwent focal HIFU (Sonablate®500) (March/2007-November/2016). Follow-up occurred with 3-monthly clinic visits and PSA testing in the first year with PSA, every 6-12 months with mpMRI with biopsy for MRI-suspicion of recurrence. Treatment failure was any secondary treatment (ADT/chemotherapy, cryotherapy, EBRT, RRP, or re-HIFU), tumour recurrence with Gleason ≥ 3 + 4 on prostate biopsy without further treatment or metastases/prostate cancer-related mortality. Cases with anterior cancer were compared to those with posterior disease. RESULTS 267 patients were analysed following eligibility criteria. 45 had an anterior focal-HIFU and 222 had a posterior focal-HIFU. Median age was 64 years and 66 years, respectively, with similar PSA level of 7.5 ng/ml and 6.92 ng/ml. 84% and 82%, respectively, had Gleason 3 + 4, 16% in both groups had Gleason 4 + 3, 0% and 2% had Gleason 4 + 4. Prostate volume was similar (33 ml vs. 36 ml, p = 0.315); median number of positive cores in biopsies was different in anterior and posterior tumours (7 vs. 5, p = 0.009), while medium cancer core length, and maximal cancer percentage of core were comparable. 17/45 (37.8%) anterior focal-HIFU patients compared to 45/222 (20.3%) posterior focal-HIFU patients required further treatment (p = 0.019). CONCLUSION Treating anterior prostate cancer lesions with focal HIFU may be less effective compared to posterior tumours

    KOSMOS mesocosm experiment Gran Canaria 2019 on testing the effect of nutrient composition (Si:N) during artificial upwelling: suspended particulate matter

    No full text
    Suspended particulate matter and elemental stoichiometry data from the mesocosms experiment conducted in the Canary Islands in autumn 2019. Depth-integrated (0-2.5m) water samples were taken in 2-days intervals over the course of 33 days. There was no evidence for significant amounts of particulate inorganic carbon, and therefore, POC and TPC measurements were averaged and interpreted as POC. This “POC TPC average” should be used for further analysis. The upwelling treatment started on day 6. Methodological details in Goldenberg et al. (doi: 10.3389/fmars.2022.1015188)

    Seawater carbonate chemistry and risk-taking behavior in prey (shrimps)

    No full text
    Marine prey and predators will respond to future climate through physiological and behavioral adjustments. However, our understanding of how such direct effects may shift the outcome of predator–prey interactions is still limited. Here, we investigate the effects of ocean warming and acidification on foraging behavior and biomass of a common prey (shrimps, Palaemon spp.) tested in large mesocosms harboring natural resources and habitats. Acidification did not alter foraging behavior in prey. Under warming, however, prey showed riskier behavior by foraging more actively and for longer time periods, even in the presence of a live predator. No effects of longer-term exposure to climate stressors were detected on prey biomass. Our findings suggest that ocean warming may increase the availability of some prey to predators via a behavioral pathway (i.e., increased risk-taking by prey), likely by elevating metabolic demand of prey species

    Balancing the response to predation-the effects of shoal size, predation risk and habituation on behaviour of juvenile perch

    No full text
    Group size, predation risk and habituation are key drivers of behaviour and evolution in gregarious prey animals. However, the extent to which they interact in shaping behaviour is only partially understood. We analyzed their combined effects on boldness and vigilance behaviour in juvenile perch (Perca fluviatilis) by observing individuals in groups of one, two, three and five faced with four different levels of predation risk in a repeated measures design. The perch showed an asymptotic increase in boldness with increasing group size and the highest per capita vigilance in groups of two. With increasing predation risk, individuals reduced boldness and intensified vigilance. The interaction between group size and predation risk influenced vigilance but not boldness. In this context, individuals in groups of two elevated their vigilance compared to individuals in larger groups only when at higher risk of predation. Further, as only group size, they significantly reduced vigilance at the highest level of risk. With increasing habituation, solitary individuals became considerably bolder. Also, predation risk affected boldness only in the more habituated situation. Hence, repeated measures may be essential to correctly interpret certain relationships in behaviour. Our results suggest that perch may adjust boldness behaviour to group size and predation risk independently. This is rather unexpected since in theory, natural selection would strongly favour an interactive adjustment. Finally, vigilance might be particularly effective in groups of two due to the intense monitoring and detailed response to changing levels of risk

    Ocean warming increases availability of crustacean prey via riskier behavior

    No full text
    Marine prey and predators will respond to future climate through physiological and behavioral adjustments. However, our understanding of how such direct effects may shift the outcome of predator–prey interactions is still limited. Here, we investigate the effects of ocean warming and acidification on foraging behavior and biomass of a common prey (shrimps, Palaemon spp.) tested in large mesocosms harboring natural resources and habitats. Acidification did not alter foraging behavior in prey. Under warming, however, prey showed riskier behavior by foraging more actively and for longer time periods, even in the presence of a live predator. No effects of longer-term exposure to climate stressors were detected on prey biomass. Our findings suggest that ocean warming may increase the availability of some prey to predators via a behavioral pathway (i.e., increased risk-taking by prey), likely by elevating metabolic demand of prey species

    Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem

    No full text
    Ocean warming and species exploitation have already caused large‐scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time‐dynamic integrated food web modeling approach (Ecosim) with previous data from community‐level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well‐managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near‐future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human‐driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade‐off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate‐driven biodiversity change and its effects on ecosystem processes

    Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis.

    Get PDF
    International audienceThe statistical properties of membrane protein random walks reveal information on the interactions between the proteins and their environments. These interactions can be included in an overdamped Langevin equation framework where they are injected in either or both the friction field and the potential field. Using a Bayesian inference scheme, both the friction and potential fields acting on the ε-toxin receptor in its lipid raft have been measured. Two types of events were used to probe these interactions. First, active events, the removal of cholesterol and sphingolipid molecules, were used to measure the time evolution of confining potentials and diffusion fields. Second, passive rare events, de-confinement of the receptors from one raft and transition to an adjacent one, were used to measure hopping energies. Lipid interactions with the ε-toxin receptor are found to be an essential source of confinement. ε-toxin receptor confinement is due to both the friction and potential field induced by cholesterol and sphingolipids. Finally, the statistics of hopping energies reveal sub-structures of potentials in the rafts, characterized by small hopping energies, and the difference of solubilization energy between the inner and outer raft area, characterized by higher hopping energies

    KOSMOS mesocosm experiment Gran Canaria 2019 on testing the effect of nutrient composition (Si:N) during artificial upwelling: environment, nutrients and carbonate chemistry

    No full text
    Physio-chemical data from the mesocosms experiment conducted in the Canary Islands in autumn 2019. Values are depth-integrated averages in (mostly) 2-days intervals over the course of 33 days. The upwelling treatment started on day 6. Oxygen (O2), salinity, temperature, photosynthetically active radiation (PAR) and pH were measured from 0.3 to 2.5 m depth via three replicate CTD casts. Dissolved inorganic carbon (DIC) and the inorganic nutrients nitrite (NO2), combined nitrate and nitrite (NO3 + NO2), ammonia (NH4), phosphate (PO4) and silicate (Si(OH)4) were measured in triplicates on depth integrated water samples from 0 to 2.5 m depth. Total alkalinity (TA) was measured from the same water samples but in duplicates. Then, pCO2 and nitrate was calculated. Methodological details in Goldenberg et al. (doi:10.3389/fmars.2022.1015188)

    A Tumorigenic Actin Mutant Alters Fibroblast Morphology and Multicellular Assembly Properties

    No full text
    Tumor initiation and progression are accompanied by complex changes in the cytoarchitecture that at the cellular level involve remodeling of the cytoskeleton. We report on the impact of a mutant -actin (G245D-actin) on cell structure and multicellular assembly properties. To appreciate the effects of the Gly245Asp substitution on the organization of the actin cytoskeleton, we examined the polymerization properties of G245D-actin in vitro by pyrene polymerization assays and total internal reflection fluorescence microscopy (TIRF). The mutant actin on its own has a significantly reduced polymerization efficiency compared to native actin but also modifies the polymerization of actin in copolymerization experiments. Comparison of the structure of Rat-2 fibroblasts and a stably transfected derivate called Rat-2-sm9 revealed the effects of G245D-actin in a cellular environment. The overall actin levels in Rat-2-sm9 show a 1.6-fold increase with similar amounts of mutant and wild-type actin. G245D-actin expression renders Rat-2-sm9 cells highly tumorigenic in nude mice. In Rat-2-sm9 monolayers, G245D-actin triggers the formation of extensive membrane ruffles, which is a characteristic feature of many transformed cells. To approximate complex cell-cell and cell-matrix interactions that occur in tumors and might modulate the effects of G245D-actin, we extended our studies to scaffold-free 3D spheroid cultures. Bright field and scanning electron microscopy (SEM) show that Rat-2-sm9 and Rat-2 cells share essential features of spheroid formation and compaction. However, the resulting spheroids exhibit distinct phenotypes that differ mainly in surface structure and size. The systematic comparison of transformed and normal spheroids by SEM provides new insights into scaffold-free fibroblast spheroid formation. (c) 2013 Wiley Periodicals, In
    corecore