74,289 research outputs found

    Thermodynamic Formalism for Topological Markov Chains on Borel Standard Spaces

    Full text link
    We develop a Thermodynamic Formalism for bounded continuous potentials defined on the sequence space X≡ENX\equiv E^{\mathbb{N}}, where EE is a general Borel standard space. In particular, we introduce meaningful concepts of entropy and pressure for shifts acting on XX and obtain the existence of equilibrium states as additive probability measures for any bounded continuous potential. Furthermore, we establish convexity and other structural properties of the set of equilibrium states, prove a version of the Perron-Frobenius-Ruelle theorem under additional assumptions on the regularity of the potential and show that the Yosida-Hewitt decomposition of these equilibrium states do not have a purely additive part. We then apply our results to the construction of invariant measures of time-homogeneous Markov chains taking values on a general Borel standard space and obtain exponential asymptotic stability for a class of Markov operators. We also construct conformal measures for an infinite collection of interacting random paths which are associated to a potential depending on infinitely many coordinates. Under an additional differentiability hypothesis, we show how this process is related after a proper scaling limit to a certain infinite dimensional diffusion.Comment: Accepted for publication in Discrete and Continuous Dynamical Systems. 23 page

    Effective action for a quantum scalar field in warped spaces

    Get PDF
    We investigate the one-loop corrections at zero, as well as finite temperature, of a scalar field taking place in a braneworld motived warped background. After to reach a well defined problem, we calculate the effective action with the corresponding quantum corrections to each case.Comment: 10 pages, to appear in The European Physical Journal

    Effects of systemic and non-systemic stresses on the thermal characteristics of corn

    Get PDF
    Experiments were conducted on corn plants using a calibrated spectroradiometer under field conditions in the indium antimonide channel (InSb, 2.8 to 5.6 mm) and the mercury cadmium telluride channel (HgCdTe, 7 to 14 mm). A ground cover experiment, an experiment on nonsystemic corn plants, and an experiment on systemic-stressed corn plants were included. The average spectral radiance temperature of corn plant populations was found (1) to be statistically significantly different for four healthy corn plant populations, (2) to increase with increased blight severity, and (3) to be statistically significantly different for varying rates of nitrogen applications

    The Jacobi identity for Dirac-like brackets

    Get PDF
    For redundant second-class constraints the Dirac brackets cannot be defined and new brackets must be introduced. We prove here that the Jacobi identity for the new brackets must hold on the surface of the second-class constraints. In order to illustrate our proof we work out explicitly the cases of a fractional spin particle in 2+1 dimensions and the original Brink-Schwarz massless superparticle in D=10 dimensions in a Lorentz covariant constraints separation.Comment: 14 pages, Latex. Final version to be published in Int. J. Mod. Phys.

    A laser technique for characterizing the geometry of plant canopies

    Get PDF
    The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower
    • …
    corecore