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Abstract We investigate the one-loop corrections, at zero
as well as finite temperature, of a scalar field taking place in
a braneworld motivated warped background. After to reach a
well-defined problem, we calculate the effective action with
the corresponding quantum corrections to each case.

1 Introduction

The subtlety of quantum field theory (QFT) in curved space-
time is well known. In fact, there are several seminal works
elaborating on the many sharp points necessary for the estab-
lishment of such a theory [1,2]. On general grounds it is
possible to split the approaches of quantum formulations in
curved spacetimes in two branches: extension of the usual
formalism by applying and adapting the flat background for-
mulation to the curved case (see [3,4], just to enumerate
some) and, on the other hand, construction of an entirely
new framework, as the formulation of algebraic quantum
field [5] serves as a prominent example. It is also relevant
to stress new approaches outside the perturbative scope [6].
In this paper we adopt the former approach, represented by
the background-field method [7,8], and we investigate how
the quantization upon warped spaces can bring new features
for both theories, QFT in curved spaces and non-factorizable
geometries.

The application of the usual background-field method
for quantization in curved spaces rests upon the (plausible)
hypothesis that in a neighborhood of a given point over the
basis manifold, the momentum space can be accessed, at
least in some approximation. In this vein, by means of a local
momentum space representation, the Minkowski space tech-
niques may be applied. This program can be systematically
implemented by means of the so-called coincidence limit [9].
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The novelty in the case to be studied here is that even in this
limit there are corrections coming from the warped geometry.

In fact, our aim here is to investigate the effective action
for a quantum scalar field in a five-dimensional warped
braneworld background. Obviously, in a given extra dimen-
sional fixed point, the four-dimensional quantization pro-
cedure itself is quite usual and shall not be repeated here.
Therefore, we shall investigate what (if any) new character-
istics can appear from the quantization taking into account
the codimension, exploring the warp factor consequences.
Having said that, the context is indeed clear. If necessary,
however, one can bear in mind the following picture: after
the very presentation of the paradigmatic warped braneworld
model [10,11], it was found that it is necessary to relax the
constraint of standard model fields fixed on the brane [12],
giving rise, then, to the universal extra dimensional models,
in which all the fields are free to probe the extra dimension.
As the universe must be realized, in a manner of speaking, on
the brane, the standard model fields must be localized around
the brane core. Hence, the quantum field we are interested
here can be treated as a quantum fluctuation around the brane.

As remarked, in the quantization process we make use of
the coincidence limit, necessary to engender the homogene-
ity required to achieve the momentum space representation.
The full appreciation of this problem in a background con-
taining a given brane has led to an interesting constraint on
the warp factor itself in order to compute the one-loop cor-
rection. This criterion is in fully agreement with the more
or less recent advances in the characterization of globally
hyperbolic spacetimes [13,14].

This paper is organized as follows: in the next section we
give an outlook of the basic formalism, indicating the overall
procedure to extract the effective lagrangian. In Sect. 3, we
construct the appropriate operator to be inverted, taking into
account the specificities coming from the braneworld back-
ground. In Sect. 4 we complete the quantization procedure,
generalizing the approach to the finite-temperature case in
Sect. 5. Finally, in Sect. 6 we conclude.
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2 Outlook of the formalism

We start from the scalar field lagrangian defined by1

L [
�, gμν

] = −1

2
�

[
� + (1 − ξ)ξd R + m2

]
�, (1)

where � = gμν∇μ∇ν and ξd = 1
4

(d−2)
(d−1)

, where ξ = 1
denotes the minimal coupling and ξ = 0 stands for the con-
formal coupling case. In order to implement the background-
field method [15] we split the field as � = φ̂ + φ, where
φ̂ represents the classical background and φ stands for the
quantum fluctuation. The classic configuration dynamics can
readily be read off from the usual requirement δL

δ�
|
�=φ̂

= 0,
leading to

(
� + m2 + (1 − ξ)ξd R

)
φ̂ ≡ (

� + α2)φ̂ = 0. (2)

The quantum fluctuation dynamics is ruled by requiring
δL
δφ

= 0, which, by means of (2), gives the same dynam-

ics as the background, Eq. (2), this time with φ replacing φ̂.
We stress that in the case of considering self-coupling terms
in the lagrangian, the dynamics would be slightly different.

The induced one-loop effects lagrangian, sayL(1), is given
by

exp

(
i

h̄

∫
dxL(1)

)
= N

∫
(dφ) exp

(
− 1

2
φ(� + α2)φ

)
,

(3)

where N is an irrelevant normalization factor. Hence, differ-
entiating both sides of (3) with respect to α2 leads to

∂L(1)

∂α2 = −1

2

∫
(dφ)φ(x)φ(x ′) exp

{
i
h̄

∫
dxL

}

∫
(dφ) exp

{
i
h̄

∫
dxL

}

= lim
x→x ′ −

1

2

〈
φ(x)φ(x ′)

〉
. (4)

Therefore we have

∂L(1)

∂α2 = lim
x→x ′ −

h̄

2i
G(x, x ′), (5)

G(x, x ′) being such that

(� + α2)G(x, x ′) = (−g)−1/2δ(x, x ′), (6)

and thus the one-loop effective lagrangian can be obtained by
means of the propagator (computed in the coincidence limit)

1 The possible self-coupling term is not taken into account in the
lagrangian, ensuring only perturbatively renormalizable terms in higher
dimensions.

after integration in α2. The conventions used throughout this
paper are such that x ′ denotes the origin of the two point
Green function. A straightforward manipulation of Eq. (6)
leads to

HḠ = (−g)−1/2(x)(−g)1/2(x ′)δ(x, x ′), (7)

where H = (−g)1/4(x ′)[� + α2](−g)−1/4(x) and Ḡ =
(−g)1/4(x)G(x, x ′)(−g)1/4(x ′).

As we have remarked, the metric expansion by means of
a Riemann coordinate system is, at least, doubtful since the
brane breaks the full spacetime diffeomorphism and possi-
bly the necessary homogeneity around a given point near
the brane (or at the brane core, in our case). The explicit
calculations involving the HḠ operator are lengthy but not
particularly difficult. The general idea is just elaborating on
the kernel

HḠ = (−g)1/4(x ′)�
(

(−g)−1/4(x)Ḡ

)

+α2(−g)1/4(x ′)(−g)−1/4(x)Ḡ, (8)

where the derivative is taken with respect to x , i.e.,

�
(

(−g)−1/4(x)Ḡ

)

= 1√−g
∂M

[
(−g)1/2gMN∂N [(−g)−1/4Ḡ]

]
, (9)

as usual. Thus, after a bit of algebra, Eq. (7) reads

gAB∂A∂BḠ + ∂Ag
AB∂BḠ

+ (−g)−1/4(x)∂A
[
(−g)−1/2(x)gAB∂B(−g)−1/4(x)

]
Ḡ

+α2Ḡ = (−g)1/2(x ′)(−g)−1/2(x)δ(x, x ′). (10)

Heretofore, we have made no assumptions on the space-
time structure, except for its warped nature and the existence
of a brane in the origin x ′ (which can be assumed as the zero
point without loss of generality). Now we shall introduce a
few further restrictions to render this study feasible.

3 Warped braneworld peculiarities

In order to address to our problem properly, some particu-
larization toward the warped braneworld background are in
order. The line element is, thus, given by

ds2 = W (y)2ημνdxμdxν + dy2 = gABdx Adx B , (11)

where ημν = diag(−1,+1,+1,+1), and gAB = diag
(W (y)ημν, 1), with greek indices running from μ =
0, 1, 2, 3. The necessary boundary conditions over W (y),
ensuring a well-defined background, are
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lim
y→0

W (y) = 1, lim
y→±∞ W (y) = 0, and

lim
y→0

W ′(y) = 0, (12)

where W ′(y) means a derivative with respect to the extra
dimension, and the last condition ensures its maximum in
y = 0. In view of the above line element, Eq. (10) reads

(
∂2
y +W−2�4

)
Ḡ− 2

W 10(y)

[
2W (y)W ′′(y)−7(W ′(y))2

]
Ḡ

+ α2Ḡ = W−4(y)δ(y)δ(x), (13)

where the Ḡ first derivative terms disappear due to fixed coef-
ficient of the y-coordinate in the background metric. It is
fairly simple to see that the scalar of curvature associated to
(11) is

R = −
[

8
W ′′(y)
W (y)

+ 12
(W ′(y))2

W 2(y)

]
, (14)

therefore the effective mass term may be reinserted back into
Eq. (13), yielding
(
∂2
y + W−2�4

)
Ḡ + m2Ḡ

+ 1

W 10

[
W ′′W

(
3W 8

2
(ξ − 1) − 4

)
3

2
W ′2

×
(

3W 8

2
(ξ − 1) + 28

3

)]
Ḡ = W−4δ(y)δ(x).

(15)

Now we are in a position to face the important question: is
the brane thin or thick? As is well known from the braneworld
modeling, the general idea that there is a typical scale below
which the standard physics should be modified is incorpo-
rated in the thick brane paradigm. We have not, however,
completely specified the brane shape so far. In fact the con-
ditions (12) may be applied to both (thick or thin) cases.
Another important question concerning the background is
the study of hyperbolic operators itself, as the one of Eq.
(15). In order to avoid ill defined scenarios in the construc-
tion of the propagator in curved backgrounds, the spacetime
must be globally hyperbolic. As one may guess, these two
points are also related in this problem.

In order to solve these problems, we start assuming the
brane as an infinitely thin object. We shall see that in this
case a contradiction shows up, forcing one to conclude that
the brane must be thick.

By assuming, then, a thin brane we are able to split the
spacetime metric, or equivalently the warp factor in our case,
and the Green function itself, along the extra dimension as

Ḡ = 
(y)Ḡ+ + 
(−y)Ḡ−,

W = 
(y)W+ + 
(−y)W−, (16)

where 
 is the usual Heaviside distribution defined by


(y) =
{

1, y > 0
0, y < 0

, (17)

obeying the algebra 
2(y) = 
(y), 
(y)
(−y) = 0, and
d
(y)

dy = δ(y). This split along the extra dimension is quite
useful in order to explore the brane as a region between two
different bulk adjacencies [16]. The situation expressed by
Eqs. (16) is clear: we are decomposing the relevant quanti-
ties in both sides separated by the brane and the projection on
the brane will be performed in a moment. Within the afore-
mentioned algebra, the unity is nothing but the simple sum

(y) + 
(−y) = 1, and therefore it is fairly trivial to see
that

Wn = 
(y)(W+)n + 
(−y)(W−)n, ∀n ∈ Z. (18)

In view of our tentative assumption, the brane is under-
stood as a infinitely thin hypersurface orthogonally riddled
by geodesics. The derivatives with respect to the extra dimen-
sion is given by

W ′ = 
(y)∂yW
+ + 
(−y)∂yW

−, (19)

W ′′ = 
(y)∂2
yW

+ + 
(−y)∂2
yW

− + δ(y)[∂yW ]ny, (20)

where ny is a unit vector orthogonal to the brane and we
denote [A] = A+ − A−, being A± the limit lim±→0 A, i.e.,
the limit of the A quantity approaching the brane from the
side ±. An analogous derivative is respected by the Green
function. By implementing this technique into Eq. (15) one
sees that there is a strong constraint coming from the prod-
uct W ′′W . In fact, bearing in mind that the product of dif-
ferent distributions is not well defined in the distributional
calculus, it is necessary to impose [∂yW ] = 0. This is the
only way to avoid ill defined scenarios. It turns out, however,
that this constraint cannot be fulfilled by an infinitely thin
brane. Just to illustrate this point, let us consider the paradig-
matic Randall–Sundrum warp factor given by W = e−κ|y|,
being κ related to the AdS bulk. It is simple to verify that
(∂yW )+ = −κe−κy+

, while (∂yW )− = κe−κy−
. Hence the

necessary condition [∂yW ] = 0 is not obeyed.
As the infinitely brane approach renders the above contra-

diction, one is forced to conclude that the background must
be comprised by a thick brane. This result does not means
that quantization over thin branes backgrounds (or over the
Randall–Sundrum setup) is wrong. In a plenty of cases of
physical relevance, for instance, piecewise continuity of the
warp factor is indeed enough. Nevertheless, for the problem
we are working on, it is relevant to have a fully smooth back-
ground since quantum fluctuations starting from the brane
core may cross the brane itself.

From a different, but complementary, point of view it was
recently shown that a given warped spacetime is hyperbolic
(i.e., it is suitable for a well-defined Cauchy problem) if, and
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only if, the warp factor is of C∞ class [13,14]. The previous
discussion was, then, an illustrative example of the general
formalism developed in Refs. [13,14].

4 Effective lagrangian for a quantum scalar field in
warped space

Having established the brane scenario in which we are work-
ing on, we can proceed to seek a solution for the field
equations satisfied by the quantum scalar perturbation and,
therefore, find the corrections introduced by the one-loop
lagrangian L(1) to the final effective action.

In order to extract the UV-divergent part of the one-loop
effective action, it is sufficient (and much simpler) just to
evaluate the bulk propagator in the vicinity of the brane
itself. Therefore, we can find the associated Green’s func-
tion by taking the coincidence limit of Eq. (15).2 Applying
the boundary conditions given by (12), we are left only with
the second derivative of the warp factor and do not need to
know the full detailed behavior of W (y) in the interior. With
these considerations, we find

[
�5 + α2

]
ḠE (z) = δ(z), (21)

with the replacement

α2 → α2 =
{
m2 + W ′′

[
3

2
(ξ − 1) − 4

]}
, (22)

where we have made the substitution x−x ′ = z. Here, �5 =
∂2
τ +∂2

i +∂2
y is the Euclidean five-dimensional d’Alembertian

obtained via a Wick rotation to the imaginary time t → −iτ ,
and the Euclidean Green function is defined by ḠE (z) =
ḠE (−iτ, x, y; τ ′, x′, y′) ≡ Ḡ(t, x, y; t ′, x′, y′).

With this set up we can introduce a momentum space such
that the Fourier transform of ḠE (z) is given by

ḠE (z) = 1

(2π)5

∫
d5 peipzG(p), (23)

and, using Eq. (21), the equation satisfied by G(p) is found
to be

(p2 + α2)G(p) = 1. (24)

A solution to G(p) can be found upon an inversion of the
operator (p2 +α2), which, in the proper-time integral repre-
sentation [7,8], assumes the form

2 Here and in the rest of this section, W ′′ = d2W
dy2 |y=0, since we are in

the coincidence limit. Note that even in this case the second derivative
of the warp factor is present.

G(p) = (p2 + α2)−1 =
∫ ∞

0
dse−α2se−p2s . (25)

Therefore, using (23) and (25), the euclideanized Green func-
tion in the configuration space is given by

ḠE (z = 0) =
∫ ∞

0

ds

(4πs)5/2
e−α2s, (26)

and the correction to the total effective lagrangian can be
found on integrating with respect to α2, reading

L(1)
E = − h̄

2(4π)5/2

∫ ∞

0

ds

s7/2 e
−α2s . (27)

The above expression for the effective lagrangian is clearly
divergent. In order to get a meaningful result, let us perform
a small proper-time expansion of the integrand. Since α2 can
be split into a mass term, m2, and a term that depends on the
warp factor, U , such that

α2 = m2 +
{
W ′′

[
3

2
(ξ − 1) − 4

]}
= m2 +U, (28)

we find

L(1)
E = − h̄

2(4π)5/2

∫ ∞

0

ds

s7/2 e
−m2s

×
(

1 −Us + U 2s2

2
− U 3s3

3! + U 4s4

4! + · · ·
)

. (29)

Writing this expansion as e−Us = ∑∞
l=0 als

l , and making
use of the identity

�(x) ≡
∫ ∞

0
dssx−1e−s, (30)

the one-loop correction to the effective lagrangian can be
rewritten as

L(1)
E = − h̄

2(4π)5/2

∞∑

l=0

alm
5−2l�

(
l − 5

2

)
. (31)

In order to better understand where those corrections take
place, let us consider a general gravitational action in five
dimensions, given by

Sg =
∫

d5xL0 =
∫

d5x
√
g

1

16πGB
(R − 2�B), (32)

where �B plays the role of the five-dimensional cosmolog-
ical constant and GB is the five-dimensional gravitational
constant, all bare quantities [17]. Therefore, the total effec-
tive lagrangian Le f f will be given by the sum of Eqs. (1),
(31), and L0 in (32).3

3 We switch back from the euclideanized form making the substitution
L(1)
E → −L(1).
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Expanding the first three terms in the expression (31), we
find Le f f = L + L0 + L(1) to be

Le f f = L + L0 + mh̄

32π2

[
4

15
m4 + 2

3
m2U +U 2

]

+ h̄

64π5/2

∞∑

l=3

alm
5−2l�

(
l − 5

2

)
. (33)

A closer look at Eqs. (28) and (14) shows that U ∝ R, so
we can identifyU = [ 3

16 (1 − ξ) + 1
2

]
R. In this way, we can

rewrite the effective lagrangian in the following form:

Le f f = L +
[

m5h̄

120π2 − 2�B

16πGB

]

+
[
m3h̄

48π2

(
3

16
(ξ − 1) + 1

2

)
+ 1

16πGB

]
R

+O(R2). (34)

As we can see, the first term introduces a correction into
the bare cosmological constant, while the second one shifts
the gravitational constant. The following terms that appear
will introduce small corrections of order R2 and will induce
fourth derivatives of the metric.

It is also interesting to see that even if we set �B = 0
in L0, the corrections arising from the quantum scalar field
fluctuations play the role of an effective cosmological con-
stant in five dimensions with a negative sign, provided a
positive definite mass for the scalar field. The relevance of
this remark may be understood as follows: in the context of
infinitely thin branes there is a sharp relationship between
the four-dimensional cosmological constant, �4D , and the
five-dimensional counterpart �B [18]. In the case of thick
branes the precise analog relation is unknown. It is expected,
however, the existence of such a relationship between �4D

and �B (otherwise the infinitely thin brane limit would not be
possible). In this vein, again in the extreme �B = 0 case, the
one-loop corrections would be responsible to set an effective
four-dimensional cosmological constant. As an aside remark
we stress for the minuteness of the generated �4D .

5 Finite-temperature corrections

Taking advantage of Eq. (26), we can construct a finite-
temperature theory by imposing a periodic condition on
the imaginary time τ according to τ → τ + nβ, where
β = 1/kBT is the inverse temperature and kB the Boltz-
mann constant. Following the procedure outlined in [7,8]
and writing the Green function as a sum in n, we obtain

Gβ(z, z′) =
∞∑

n=−∞
G(x + nβu, x ′), u = (1, 0, 0, 0, 0).

(35)

We can relate the Poisson summation formula and the delta
distribution via

∞∑

n=−∞
eip0nβ = 2π

β

∞∑

n=−∞
δ

(
p0 − 2πn

β

)
,

and, for a d-dimensional case, it can be seen that

Gβ(z, z′) = 1

(2π)d−1β

∫
dd−1 p

∫ ∞

0
ds

×
∞∑

n=−∞
e−α2se−(2πn/β)2se−|p|2s . (36)

According to Eq. (5), the one-loop correction to the effective
lagrangian will be given by

∂L(1)
β

∂α2 = lim
z→z′

h̄

2
Gβ(z, z′), (37)

and we find

L(1)
β = − h̄

β

�
[ 1−d

2

]

2(2π)d−1

∞∑

n=−∞

[

α2 +
(

2πn

β

)2
](d−1)/2

.

(38)

The correction presented in (38) is clearly divergent. In
five dimensions �

[ 1−d
2

]
has a sharp divergence, as well as

the sum in the free term α2. At this point we shall proceed by
manipulating the sum above via usual methods of the regu-
larized zeta function and dimensional regularization. Being
willing to accept this procedure is indeed worthwhile, since
it is possible to arrive at a finite quantum correction. We start
rewriting the sum in (38) as

∞∑

n=−∞

[

α2 +
(

2πn

β

)2
](d−1)/2

= αd−1 + 2αd−1
∞∑

n=1

(νn)d−1

[(
1

νn

)2

+ 1

](d−1)/2

,

with ν ≡ 2π
αβ

. For a high-temperature expansion (αβ � 1),
the sum can be expanded as

∞∑

n=1

(νn)d−1

[(
1

νn

)2

+ 1

](d−1)/2

≈ νε

[
ν4ζ(1 − d) + 1

2
(d − 1)ν2ζ(3 − d)

+ 1

8
(d − 1)(d − 3)ζ(ε) + 1

16
(d − 1)(d − 3)(d − 5)

+ ν−2ζ(7 − d) + O(α3β3)

]
, (39)

where we have made ε = d − 5 and
∑∞

k=1
1
kn = ζ(n)

is the regularized zeta function. Combining this result with
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the expansion for the gamma function given by �
[ 1−d

2

] =
− 1

d−5 +( 3
4 − γ

2

)+O(d−5) for d → 5 (with γ = 0.577 . . .

being the Euler–Mascheroni constant), and taking the appro-
priate limit, we find

L(1)
β = h̄

16π4

[
− 12

β5
ζ(5) + 2α2

β3 ζ(3)

− α4

2β
ln 2π + α6β

8π2 ζ(5) + O(α7β2)
]
. (40)

The divergent terms proportional to 1
d−5 combine with those

from ζ(m − d), m being a positive odd integer, yielding a
finite result in the limit, while the other terms vanish. Since
this is a high-temperature expansion, we can discard higher-
order terms and the major contribution will come from the
first three. It is worth noting that in this high-temperature
expansion the first correction is given solely by the temper-
ature.

6 Final remarks

As can be seen from our results, the appreciation of a quan-
tum scalar field in a warped space braneworld leads to a
thick brane background solution in order to define a well-
established momentum space. In fact, as in this problem
quantum fluctuations crossing the brane are relevant, it is nec-
essary to have a smooth background. In addition, the warped
nature of the metric introduces an effective potential slightly
different from what we would expect from an ordinary five-
dimensional Einstein–Hilbert gravity with a scalar field, for
the zero-temperature theory.

For the finite-temperature case, it is also interesting to
observe that if we take the limit of αβ → 0 in Eq. (40) for a
very high-temperature expansion, the first terms will diverge
and the one-loop correction is no longer sufficient, being
necessary higher-loop contributions to tame the infinities that
appear.

To sum up, the method adopted in this work has shown that
the warp factor in the quantization procedure has a twofold
role: on the one hand it is responsible for specific conse-
quences in the one-loop quantum corrections. On the other
hand, its adequate functional form is essential to yield a well-
defined problem.
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