702 research outputs found

    Leishmania amazonensis Arginase Compartmentalization in the Glycosome Is Important for Parasite Infectivity

    Get PDF
    In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg− L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg− mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model
    corecore