62,901 research outputs found

    Influence of Refractory Periods in the Hopfield model

    Full text link
    We study both analytically and numerically the effects of including refractory periods in the Hopfield model for associative memory. These periods are introduced in the dynamics of the network as thresholds that depend on the state of the neuron at the previous time. Both the retrieval properties and the dynamical behaviour are analyzed.Comment: Revtex, 7 pages, 7 figure

    On the κ\kappa-Dirac Oscillator revisited

    Get PDF
    This Letter is based on the κ\kappa-Dirac equation, derived from the κ\kappa-Poincar\'{e}-Hopf algebra. It is shown that the κ\kappa-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr\mathbf{p}\to\mathbf{p}-im\omega\beta\mathbf{r}, in the κ\kappa-Dirac equation, one obtains the κ\kappa-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0\varepsilon=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.Comment: 5 pages, no figures, accepted for publication in Physics Letters

    A laser technique for characterizing the geometry of plant canopies

    Get PDF
    The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower

    Gauge fields in a string-cigar braneworld

    Get PDF
    In this work we investigate the properties of an Abelian gauge vector field in a thin and in a smoothed string-like braneworld, the so-called string-cigar model. This thick brane scenario satisfies the regularity conditions and it can be regarded as an interior and exterior string-like solution. The source undergoes a geometric Ricci flow which is connected to a variation of the bulk cosmological constant. The Ricci flow changes the width and amplitude of the massless mode at the brane core and recover the usual thin string-like behavior at large distances. By numerical means we obtain the Kaluza-Klein (KK) spectrum for both the thin brane and the string-cigar. It turns out that both models exhibit a mass gap between the massless and the massive modes and between the high and the low mass regimes. The KK modes are smooth near the brane and their amplitude are enhanced by the string-cigar core. The analogue Schr\"odinger potential is also tuned by the geometric flow.Comment: The discussion about the Kaluza-Klein spectrum of the gauge field was improved. Numerical analysis was adapted to the conventional notation on Kaluza-Klein number. Some graphics were modified for considering other notation. Results unchanged. References added. Corrected typos. 17 pages. 6 figures. To match version to appears in Physics Letters
    • …
    corecore