16 research outputs found

    Drug release mechanisms of chemically cross-linked albumin microparticles: effect of the matrix erosion

    Get PDF
    Albumin (BSA) microparticles were developed as a biotechnological alternative for drug delivery. Vitamin B12 (Vit-B12) was used as a model drug. The microparticles were obtained from maleic anhydride-functionalized BSA and N′,N′-dimethylacrylamide (DMAAm) in a W/O emulsion without and with PVA. The microparticles produced at 15 min of stirring without PVA showed the best results in terms of size, homogeneity, and sphericity. In such a case, BSA played a role as a surface active agent, replacing PVA. For longer stirring times, BSA was unable to act as an emulsifier. These microparticles showed an uncommon release profile, consisting of a two-step release mechanism, at the pH range studied. Considering that a two-step release mechanism is occurring, the experimental data were adjusted by applying modified power law and Weibull equations in order to describe release mechanism n and release rate constant k, respectively. Each one of the release stages was related to a specific value of n and k. The second stage was driven by a super case II transport mechanism, as a result of diffusion, macromolecular relaxation, and erosion. A third model, described by Hixson–Crowell, confirmed the erosion mechanism. Vit-B12 diffusion kinetics in aqueous solutions (i.e., without the microparticles) follows a one-step process, being k dependent on the pH, confirming that the two-step release mechanism is a characteristic profile of the developed microparticles. The microparticles released only 2.70% of their initial drug load at pH 2, and 58.53% at pH 10

    Knowledge about viral hepatitis among participants of Gay Pride Event in Brazil

    No full text
    Made available in DSpace on 2015-09-21T17:25:26Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) alexandre_vieira_etal_IOC_2013.pdf: 119976 bytes, checksum: 0de4249346bee19ce6328f0170977ff4 (MD5) Previous issue date: 2013Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Desenvolvimento Tecnológico em Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Desenvolvimento Tecnológico em Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Desenvolvimento Tecnológico em Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hepatites Virais. Rio de Janeiro, RJ, Brasil.Male or female homosexual, bisexual and transgender individuals (HBT) can be more exposed to viral hepatitis, but few studies worldwide have been conducted about viral hepatitis knowledge among HBT.1–5 The aim of this study was to evaluate viral hepatitis knowledge and potential risk of HBT and heterosexual individuals attending a Gay Pride Event....(AU

    Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass

    No full text
    Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed

    Ayahuasca and Its DMT- and β-carbolines – Containing Ingredients Block the Expression of Ethanol-Induced Conditioned Place Preference in Mice: Role of the Treatment Environment

    No full text
    Ayahuasca is a hallucinogenic beverage produced from the decoction of Banisteriopsis caapi (Bc) and Psychotria viridis (Pv), β-carboline- and N,N-dimethyltryptamine(DMT)-containing plants, respectively. Accumulating evidence suggests that ayahuasca may have therapeutic effects on ethanol abuse. It is not known, however, whether its effects are dependent on the presence of DMT or if non-DMT-containing components would have therapeutic effects. The aim of the present study was to investigate the rewarding properties of ayahuasca (30, 100, and 300 mg/kg, orally), Bc (132, 440, and 1320 mg/kg, orally) and Pv (3.75, 12.5 and 37.5 mg/kg, i.p.) extracts and their effects on ethanol (1.8 g/kg, i.p.) reward using the conditioned place preference (CPP) paradigm in male mice. Animals were conditioned with ayahuasca, Bc or Pv extracts during 8 sessions. An intermediate, but not a high, dose of ayahuasca induced CPP in mice. Bc and Pv did not induce CPP. Subsequently, the effects of those extracts were tested on the development of ethanol-induced CPP. Ayahuasca, Bc or Pv were administered before ethanol injections during conditioning sessions. While Bc and Pv exerted no effects on ethanol-induced CPP, pretreatment with ayahuasca blocked the development of CPP to ethanol. Finally, the effects of a post-ethanol-conditioning treatment with ayahuasca, Bc or Pv on the expression of ethanol-induced CPP were tested. Animals were conditioned with ethanol, and subsequently treated with either ayahuasca, Bc or Pv in the CPP environment previously associated with saline or ethanol for 6 days. Animals were then reexposed to ethanol and ethanol-induced CPP was quantified on the following day. Treatment with all compounds in the ethanol-paired environment blocked the expression of ethanol-induced CPP. Administration of an intermediate, but not a high, dose of ayahuasca and Bc, as well as Pv administration, in the saline-paired compartment blocked the expression of ethanol-induced CPP. The present study sheds light into the components underlying the therapeutic effects of ayahuasca on ethanol abuse, indicating that ayahuasca and its plant components can decrease ethanol reward at doses that do not exert abuse liability. Importantly, the treatment environment seems to influence the therapeutic effects of ayahuasca and Bc, providing important insights into clinical practice
    corecore