2,281 research outputs found

    Increasing the Precision of Distant Pointing for Large High-Resolution Displays

    Get PDF
    Distant pointing at large displays allows rapid cursor movements, but can be problematic when high levels of precision are needed, due to natural hand tremor and track-ing jitter. We present two ray-casting-based interaction techniques for large high-resolution displays – Absolute and Relative Mapping (ARM) Ray-casting and Zooming for Enhanced Large Display Acuity (ZELDA) – that ad-dress this precision problem. ZELDA enhances precision by providing a zoom window, which increases target sizes resulting in greater precision and visual acuity. ARM Ray-casting increases user control over the cursor position by allowing the user to activate and deactivate relative map-ping as the need for precise manipulation arises. The results of an empirical study show that both approaches improve performance on high-precision tasks when compared to basic ray-casting. In realistic use, however, performance of the techniques is highly dependent on user strategy

    Literature Survey on Interaction Techniques for Large Displays

    Get PDF
    When designing for large screen displays, designers are forced to deal with cursor tracking issues, interacting over distances, and space management issues. Because of the large visual angle of the user that the screen can cover, it may be hard for users to begin and complete search tasks for basic items such as cursors or icons. In addition, maneuvering over long distances and acquiring small targets understandably takes more time than the same interactions on normally sized screen systems. To deal with these issues, large display researchers have developed more and more unconventional devices, methods and widgets for interaction, and systems for space and task management. For tracking cursors there are techniques that deal with the size and shape of the cursor, as well as the “density” of the cursor. There are other techniques that help direct the attention of the user to the cursor. For target acquisition on large screens, many researchers saw fit to try to augment existing 2D GUI metaphors. They try to optimize Fitts’ law to accomplish this. Some techniques sought to enlarge targets while others sought to enlarge the cursor itself. Even other techniques developed ways of closing the distances on large screen displays. However, many researchers feel that existing 2D metaphors do not and will not work for large screens. They feel that the community should move to more unconventional devices and metaphors. These unconventional means include use of eye-tracking, laser-pointing, hand-tracking, two-handed touchscreen techniques, and other high-DOF devices. In the end, many of these developed techniques do provide effective means for interaction on large displays. However, we need to quantify the benefits of these methods and understand them better. The more we understand the advantages and disadvantages of these techniques, the easier it will be to employ them in working large screen systems. We also need to put into place a kind of interaction standard for these large screen systems. This could mean simply supporting desktop events such as pointing and clicking. It may also mean that we need to identify the needs of each domain that large screens are used for and tailor the interaction techniques for the domain

    Development of an integrated messenger RNA manufacturing process using thermoreversible aqueous biphasic systems

    Get PDF
    The promising potential of messenger RNA (mRNA) vaccines as effective approaches to contain the dissemination of infectious diseases was fully disclosed during the combat to the COVID-19 pandemic. Over conventional vaccines, mRNA-based vaccines exhibit improved safety and efficacy profiles, and the possibility of repeatedly administration [1]. However, the manufacturing of mRNA vaccines is complex, costly and requires multi-step purification strategies to produce high quality products. If properly designed, ionic liquids (ILs) can act as RNA stabilizing agents [2] and enhance the selectivity of purification processes when used to form aqueous biphasic systems (ABS) [3]. Aiming to improve mRNA manufacturing, this work proposes the use of thermoreversible ABS based on ILs to integrate the production and clarification steps, further simplifying subsequent purification steps. Up to date, we have achieved the production of mRNA by in vitro transcription and its purification using conventional methods and gathered insights on mRNA stability and integrity in several structurally distinct ILs. According to these previous results, current attention is being placed on the identification of the best thermoreversible IL-based ABS to integrate production and clarification steps. Overall, the proposed integrated production-clarification platform is expected to tackle current challenges of mRNA manufacturing, especially by improving the cost-efficiency and technological simplicity of existing manufacturing processes and enhancing the stability and yield of the final product.publishe

    Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media - a review

    Get PDF
    Since the development of liquid-phase microextraction (LPME), different LPME modes depending on the experimental set-up to carry out the extraction have been described. Dispersive liquid-liquid microextraction (DLLME), in which a small amount of the water-insoluble extraction solvent is dispersed in the sample, is the most successful mode in terms of number of applications reported. Advances within DLLME have been mainly shifted to the incorporation of green, smart and tunable materials as extraction solvents to improve the sustainability and efficiency of the method. In this sense, hydrophilic media represent a promising alternative since the water-miscibility of these substances increases the mass transfer of the analytes to the extraction media, leading to higher extraction efficiencies. Considering the variety of hydrophilic media that have been incorporated in LPME approaches resembling DLLME, this review aims to classify these methods in order to clarify the confusing terminology used for some of the strategies. Hydrophilic media covered in this review comprise surfactants, polar organic solvents, deep eutectic solvents, ionic liquids, water-miscible polymers, and switchable solvents. Different physicochemical mechanisms of phase separation are discussed for each LPME method, including the coacervation phenomena and other driving forces, such as pH, temperature, salting-out effect, metathesis reaction and organic solvents. LPME modes are classified (in cloud-point extraction, coacervative extraction, aqueous biphasic systems, and different DLLME modes depending on the extraction medium) according to both the nature of the water-miscible extraction phase and the driving force of the separation. In addition, the main advances and analytical applications of these methods in the last three years are described.publishe

    Bioproducts from seaweeds: a review with special focus on the Iberian Peninsula

    Get PDF
    Seaweeds, i.e. macroalgae that occupy the littoral zone, are a great source of compounds with diverse applications; their types and content greatly determine the potential applications and commercial values. Algal polysaccharides, namely the hydrocolloids: agar, alginate and carrageenan, as well as other non-jellifying polysaccharides and oligosaccharides, are valuable bioproducts. Likewise, pigments, proteins, amino acids and phenolic compounds are also important, exploitable compounds. For the longest time the dominant market for macroalgae has been the food industry. More recently, several other industries have increased their interest in algal-derived products, e.g. cosmetics, pharmaceuticals and more recently, as a source of feedstock for biorefinery applications. This manuscript reviews the chemical composition of dominant macroalgae, as well as their potential added-value products and applications. Particular attention is devoted to the macroalgal species from the Iberian Peninsula. This is located in the Southwest of Europe and is influenced by the distinct climates of the Mediterranean Sea and the Atlantic Ocean, representing a rich spot of marine floral biodiversity

    Aqueous Biphasic Systems Comprising Natural Organic Acid-Derived Ionic Liquids

    Get PDF
    Despite the progress achieved by aqueous biphasic systems (ABSs) comprising ionic liquids (ILs) in extracting valuable proteins, the quest for bio‐based and protein‐friendly ILs continues. To address this need, this work uses natural organic acids as precursors in the synthesis of four ILs, namely tetrabutylammonium formate ([N4444][HCOO]), tetrabutylammonium acetate ([N4444][CH3COO]), tetrabutylphosphonium formate ([P4444][HCOO]), and tetrabutylphosphonium acetate ([P4444][CH3COO]). It is shown that ABSs can be prepared using all four organic acid‐derived ILs paired with the salts potassium phosphate dibasic (K2HPO4) and tripotassium citrate (C6H5K3O7). According to the ABSs phase diagrams, [P4444]‐based ILs outperform their ammonium congeners in their ability to undergo liquid–liquid demixing in the presence of salts due to their lower hydrogen‐bond acidity. However, deviations to the Hofmeister series were detected in the salts’ effect, which may be related to the high charge density of the studied IL anions. As a proof of concept for their extraction potential, these ABSs were evaluated in extracting human transferrin, allowing extraction efficiencies of 100% and recovery yields ranging between 86 and 100%. To further disclose the molecular‐level mechanisms behind the extraction of human transferrin, molecular docking studies were performed. Overall, the salting‐out exerted by the salt is the main mechanism responsible for the complete extraction of human transferrin toward the IL‐rich phase, whereas the recovery yield and protein‐friendly nature of these systems depend on specific “IL-transferrin” interactions.publishe

    Medicinal plants from open-air markets in the State of Rio de Janeiro, Brazil as a potential source of new antimycobacterial agents

    Get PDF
    AbstractEthnopharmacological relevanceSeveral medicinal plants are traditionally traded in open-air markets in Rio de Janeiro State (Brazil) to treat tuberculosis (TB) and related symptoms.Aims of the studyConduct a survey in the open-air markets of 20 cities of Rio de Janeiro State to find medicinal plants that are popularly used to treat tuberculosis and other related diseases and assess their in vitro antimycobacterial activity.Materials and methodsWe used direct observation and semi-structured interviews and asked herbalists to list species (free listing) in order to gather data about the plant species most commonly used for lung problems. We calculated a Salience Index and acquired two species of “erva-de-passarinho” (mistletoe), Struthanthus marginatus and Struthanthus concinnus (Loranthaceae), commonly used to treat tuberculosis for a bioassay-guided isolation of the antimycobacterial active principles. Extracts, fractions and isolated compounds of both species were assayed in vitro against susceptible (H37Rv) and rifampicin-resistant (ATCC 35338) Mycobacterium tuberculosis strains.ResultsFrom the interviews, we generated a list of 36 plant species belonging to 12 families. The mistletoes Struthanthus marginatus and Struthanthus concinnus showed high Salience Index values among plants used to treat tuberculosis. Bioassay-guided fractionation of hexane extracts from both species led to the isolation and/or identification of steroids and terpenoids. The Minimum Inhibitory Concentration (MIC) of the extracts and isolated compounds ranged from 25 to 200ÎŒg/mL. Some of the isolated compounds have been previously assayed against Mycobacterium tuberculosis, others are reported here for the first time (obtusifoliol: MIC H37Rv 50ÎŒg/mL, MIC ATCC 35338 12.5ÎŒg/mL; 3-O-n-acil-lup-20(29)-en-3ÎČ,7ÎČ,15α-triol: MIC H37Rv 200ÎŒg/mL, MIC ATCC 35338 100ÎŒg/mL).ConclusionsThis study demonstrated the importance of ethnobotanical surveys in markets as a source for new drugs and also for scientific validation of folk medicine

    Extraction of high value triterpenic acids from eucalyptus globulus biomass using hydrophobic deep eutectic solvents

    Get PDF
    Triterpenic acids (TTAs), known for their promising biological properties, can be found in different biomass sources and related by-products, such as Eucalyptus globulus bark, and have been extracted using organic volatile solvents such as dichloromethane. Recently, deep eutectic solvents (DES) have been identified as promising alternatives for the extraction of value-added compounds from biomass. In the present work, several hydrophobic DES were tested for the extraction of TTAs from E. globulus bark. Initial solubility studies revealed that DES based on menthol and thymol as the most promising solvents for these compounds given the highest solubilities obtained for ursolic acid (UA) at temperatures ranging from room temperature up to 90 °C. Accordingly, an eutectic mixture of menthol:thymol (1:2) was confirmed as the best candidate for the TTAs extraction from E. globulus outer bark, leading to extraction yields (weight of TTA per weight of biomass) at room temperature of 1.8 wt% for ursolic acid, 0.84 wt% for oleanolic acid and 0.30 wt% for betulinic acid. These values are significantly higher than those obtained with conventional organic solvents under similar conditions. The results obtained using these DES are promising for the recovery of TTAs for nutraceutical and pharmacological applications, while reinforcing the potential of DES as promising solvents to be applied in biorefinery processes.publishe

    Overview on protein extraction and purification using ionic-liquid-based processes

    Get PDF
    Proteins are one the most widely studied biomolecules with diverse functions and applications. Aiming at overcoming the current drawbacks of purification processes of proteins, the introduction of ionic liquids (ILs) has been a hot topic of research. ILs have been applied in the creation of aqueous biphasic systems (IL-based ABS), solid-phase extractions through poly(ionic liquid)s (PILs) and supported ionic-liquid phases (SILPs), and in the crystallization of proteins. In this sense, ILs have emerged as solvents, electrolytes or adjuvants, or as supported materials to tune the adsorption/affinity capacity aiming at developing an efficient, cost-effective, sustainable and green IL-based process for protein extraction. This review discusses different IL-based processes in the extraction and purification of proteins in the past years, namely IL-based aqueous biphasic systems (IL-based ABS), solid-phase extractions through PILs and SILPs, and protein crystallization. The type and structure of ILs applied and their influence in the different processes performance are also discussed.publishe

    Multi-walled carbon nanotubes as a platform for Immunoglobulin G attachment

    Get PDF
    Nanomaterials have been extensively used in different applications due to their peculiar characteristics and nanoscale dimensions. Among nanoparticles, carbon-based nanomaterials are becoming highly attractive for biomedical applications such as diagnosis, tissue engineering, drug delivery, and biosensing. The conjugation of carbon-based nanomaterials with antibodies combines the properties of these materials with the specific and selective recognition ability of the antibodies to antigens. The present work proposes a process intensification approach for immunoglobulin G (IgG present in rabbit serum) attachment on multi-walled carbon nanotubes (MWCNTs) in a single step. The effect of several parameters, namely MWCNTs external diameter, rabbit serum concentration, MWCNTs functionalization and pH value, on the IgG attachment yield was evaluated. The dilution of rabbit serum decreased other protein attachment, namely rabbit serum albumin (RSA), while increasing the IgG yield to 100%. The interaction mechanisms between IgG and MWCNTs were evaluated at pH 5.0 to 8.0. The protonation of IgG amino acids indicates that N-term are the most reactive amino acids in the antibody structure. The identification of the N-term reactivity at pH 8.0 allows to indicate a possible orientation of the antibody over the MWCNTs surface, described as “end-on”. Since the amount of RSA attached to MWNT decreased with the increase in serum dilution, the IgG orientation and amine activity was not affected. This orientation demonstrates that the IgG attachment over the surface of the MWCNTs could be an effective strategy to maintain the antigen recognition by the antibody, and to be used for biomedical applications.publishe
    • 

    corecore