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Abstract: Seaweeds, i.e. macroalgae that occupy the littoral zone, are a great source of 22 

compounds with diverse applications; their types and content greatly determine the 23 

potential applications and commercial values. Algal polysaccharides, namely the 24 

hydrocolloids: agar, alginate and carrageenan, as well as other non-jellifying 25 

polysaccharides and oligosaccharides, are valuable bioproducts. Likewise, pigments, 26 

proteins, amino acids and phenolic compounds are also important, exploitable 27 

compounds. For the longest time the dominant market for macroalgae has been the food 28 

industry. More recently, several other industries have increased their interest in algal-29 

derived products, e.g. cosmetics, pharmaceuticals and more recently, as a source of 30 

feedstock for biorefinery applications. This manuscript reviews the chemical 31 

composition of dominant macroalgae, as well as their potential added-value products 32 

and applications. Particular attention is devoted to the macroalgal species from the 33 

Iberian Peninsula. This is located in the Southwest of Europe and is influenced by the 34 

distinct climates of the Mediterranean Sea and the Atlantic Ocean, representing a rich 35 

spot of marine floral biodiversity.  36 
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1. INTRODUCTION 43 

Seaweeds (or macroalgae) are aquatic, photosynthetic organisms belonging to the 44 

Eukaryota Domain and the Kingdoms Plantae (the green and red algae) and the 45 

Chromista (the brown algae). Although classification systems have changed over time, 46 

it is generally accepted that: a) the green algae are included in the phylum Chlorophyta 47 

and their pigmentation is identical to that of terrestrial plants (i.e. chlorophylls a, b and 48 

carotenoids); b) the red algae belong to the phylum Rhodophyta and their 49 

photosynthetic pigments are chlorophyll a  and the phycobilins (i.e. R-phycocyanin and 50 

R-phycoerythrin) and carotenoids, mostly β-carotene, lutein and zeaxanthin and c) the 51 

brown algae are included in the Phylum Ochrophyta (or the Heterokontophyta), Class 52 

Phaeophyceae and their pigments include the chlorophylls a and c, as well as 53 

carotenoids, dominated by fucoxanthin [1, 2]. 54 

Seaweeds are fundamental to the food chain of all aquatic ecosystems. As primary 55 

producers they produce oxygen and organic compounds which serve as the basic trophic 56 

level or food for many other living beings. They have also found a role of great 57 

importance to mankind. Indeed, coastal communities have been using macroalgae in the 58 

preparation of home medicines for the treatment of distinct ailments for centuries. 59 

Green algae are useful as anthelmintics, astringents and to treat gout, while brown algae 60 

are commonly used in the treatment of rheumatic processes, arteriosclerosis, menstrual 61 

disorders, hypertension, gastric ulcers, goiter, skin diseases and syphilis. In turn, red 62 

algae can be used as anticoagulants, antihelmintics and for treating gastritis and diarrhea 63 

[3]. These applications are based on the empirical knowledge of many generations and, 64 

in most cases, the bioactive compounds and their respective mechanisms of action 65 

remain unknown. Still, the recent interest for drugs of marine origin and the 66 

concomitant, exponential investigation focusing that issue is perhaps delivering its first 67 

fruits. This is the case for the beneficial properties of various kelps (Laminaria spp. and 68 

Saccharina spp.) for the treatment of goiter, which are now known to be due to the 69 

relatively high iodine levels in these  macroalgae [4]. 70 

Today, seaweeds are used in many countries for very different purposes, including 71 

their direct consumption as food or supplements (by animals and humans), as feedstock 72 

for the extraction of phycocolloids, or for their bioactive components and as 73 

biostimulants and biofertilizers. Notably, direct use as food has strong roots in the East 74 

Asia, whereas the West seems to be more committed to the extraction of the 75 

hydrocolloids, namely carrageenan, agar and alginate (European registration numbers - 76 



4 
 

E407, E406 and E400, respectively) [3, 5]. In addition, many seaweeds are receiving 77 

increasing attention as a potential, renewable sources for the food industry, as a feed for 78 

livestock and as food directly [6]. Industrialized countries are currently increasing 79 

efforts regarding the manufacturing of high-value products derived from algae, since 80 

these contain chemical components (e.g. polysaccharides, proteins, lipids and 81 

polyphenols) with a wide range of biological activities. This range of activities leads to 82 

promising applications in nutraceutical/functional food, cosmetic, and pharmaceutical 83 

industries [7-9]. (Table 1) reviews the seaweed orders reported from the Iberian 84 

Peninsula with some known bioactivities. 85 

 86 
 87 

Table 1. Sytematics of orders of Iberian Peninsula seaweeds with some documented 88 

bioactivity (after [2]) 89 

Phylum/Class Order Genera Species 

Chlorophyta Bryopsidales 4 13 
 Dasycladales 1 1 

 Siphonocladales 1 1 

 Cladophorales 2 9 

 Ulvales 2 8 

 Ulotrichales 1 1 

Rhodophyta    

 Bangiales 2 4 

 Ahnfeltiales 1 1 

 Bonnemaisoniales 2 3 

 Ceramiales 22 29 

 Corallinales 7 14 

 Gelidiales 3 7 

 Gigartinales 18 22 

 Gracilariales 2 5 

 Halimeniales 1 2 

 Nemaliales 5 6 

 Neamatomales 1 1 

 Palmariales 2 2 

 Plocamiales 1 1 

 Rhodymeniales 5 5 

Heterokontophyta/Phaeophyceae    

 Cutleriales 2 2 

 Desmarestiales 1 2 

 Dictyotales 7 15 

 Ectocarpales 9 10 

 Fucales 8 30 

 Laminariales 6 9 

 Ralfsiales 1 1 

http://algaebase.org/browse/taxonomy/?id=4563
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 Sphacelariales 3 3 

 90 

 91 
 92 

Moreover, as world energy demands continue to rise and fossil fuel resources are 93 

increasingly reduced, macroalgae have attracted attention, as a possible renewable 94 

feedstock to biorefinery applications, for the production of multiple streams of 95 

commercial interest including biofuels such as bioethanol and biogas [10-12], 96 

particularly because they have considerable contents of carbohydrates. In this field, 97 

macroalgae have several advantages over terrestrial biomass, primarily because of their 98 

potentially high yields, no competition with food crops for the use of arable land and 99 

fresh water resources, and utilization of carbon dioxide as the only carbon input [13]. 100 

Despite their merits, most macroalgae-based biofuels are relatively unexplored 101 

resources. The main reason is that macroalgae have several carbohydrates which are 102 

distinct from those of terrestrial biomass sources. Hence, improvement of terrestrial-103 

based technologies in macroalgae or the development of new more effective 104 

technologies are needed and these are still under evaluation [2, 13-15]. One technical 105 

solution that would speed the economic viability of this process would be the co-106 

production of biofuels with other higher value products, e.g. the extraction of high-value 107 

components or the production of animal feed biomass [16]. 108 

The industry uses 7.5-8 million tonnes of wet seaweed annually [17]. This is 109 

harvested either from naturally grown (wild) seaweed, or from, open-water, cultivated 110 

(marine agronomy, farmed) crops [6]. The farming of seaweeds has expanded rapidly as 111 

demand has outstripped the supply available from natural resources. Commercial 112 

harvesting occurs in about 35 countries, spread between the Northern and Southern 113 

Hemispheres, in waters ranging from cold, through temperate, to tropical [17]. The 114 

consumption and utilization of seaweed worldwide are associated with a myriad of 115 

products that generate nearly US$ 8 billion per year [6]. Almost 90 percent are food 116 

products for human consumption; the remainder is for the hydrocolloid industry focused 117 

on agar, carrageenan and alginates. Macroalgae for direct or indirect consumption (i.e. 118 

coloring, flavoring agents and biologically active compounds sold as dietary 119 

supplements) have been gaining market share, mainly due to the recognition of Man´s 120 

seaweed traditional uses in their daily lives. 121 

 122 

1.1. The macroalgal biodiversity of the Iberian Peninsula 123 
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The Iberian Peninsula is located in the warm temperate, Mediterranean-Atlantic 124 

region and the Iberian coasts are under unique circumstances, receiving climatic 125 

influences from the North Atlantic Ocean (western, north coasts, and adjacent islands) 126 

and the Mediterranean Sea (southern, eastern coasts, and adjacent islands), thus 127 

generating a sharp latitudinal gradient in the macroalgal flora. Along the coastline, 128 

rocky shores are separated by extended areas of sandy beaches. Most of the beaches 129 

from the western coasts are very exposed and the algae which do occur in the intertidal 130 

zone are mainly found closest to the low tide level. The intertidal algal flora of the 131 

northern zone is similar to that of the coast of Central Europe (i.e. Brittany, France and 132 

the southern parts of the British Isles), while the intertidal algal flora of southwestern 133 

and eastern coasts is very different, responding to a marked influence from the 134 

Mediterranean and the North West African Coast species. Temperate species gradually 135 

decline in number southwards along the Western Iberian coast, where some taxa have 136 

their southern limit [18, 19]. 137 

The intertidal flora of the northwestern zones are dominated by Ascophyllum 138 

nodosum, Bifurcaria bifurcata, Himanthalia elongata, Saccorhiza polyschides 139 

(Phaeophyceae, Fucales), Gelidium corneum, Gelidium pulchellum (Rhodophyta, 140 

Gelidiales), Chondrus crispus, Mastocarpus stellatus, Calliblepharis jubata, Gigartina 141 

pistillata, Chondracanthus acicularis (Rhodophyta, Gigartinales), Osmundea 142 

pinnatifida, Pterosiphonia complanata (Rhodophyta, Ceramiales) and Corallina 143 

elongata (Rhodophyta, Corallinales). The southwestern zones are dominated by 144 

Corallina elongata (Rhodophyta, Corallinales), Caulacanthus ustulatus, 145 

Chondracanthus acicularis (Rhodophyta, Gigartinales), Gelidium pusillum, Osmundea 146 

pinnatifida and Chondria coerulescens (Rhodophyta, Ceramiales). Codium adherens 147 

(Chlorophyta, Bryopsidales) may have a significant presence on the rocky shores in this 148 

location [18, 19]. In the southward direction of the Iberian coasts, the number of species 149 

of red algae increase due to the presence of warmer waters and in areas subject to less 150 

anthropogenic pressure, where they naturally dominate in numerically over the brown 151 

algae and green algae. With increasing disturbances, the number of red algal taxa 152 

decline, ultimately affecting diversity and species richness [20, 21]. 153 

Seaweeds are responsible for a significant proportion of the primary production of 
154 

the Iberian Peninsula. Its traditional collection and uses were described in the 
155 

fourteenth century and, in particular, the harvesting of kelp, which is still done in the 
156 

north of Portugal, was regulated in 1308 by King D. Dinis. This usage was constant 
157 
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until the twentieth century [18, 22]. By that time, the lack of Japanese Agar during 
158 

World War II allowed for the emergence of an Portuguese agar industry, due to the 
159 

abundance and quality of local red seaweeds (mainly Gelidium corneum and 
160 

Pterocladiella capillacea) [23]. However, the unfavourable international economic 
161 

conditions led to the marked reduction of this industry; today only one company 
162 

persists (i.e. Iberagar - Luso-Spanish Society of Marine Colloids, SA) [3, 22]. Iberagar 
163 

is actually Portugal's leading company engaged in the manufacture and distribution of 
164 

hydrocolloids derived from seaweeds. Iberagar was created through the merger of two 
165 

companies, Biomar and AGC, and was established shortly after World War II. In 1970, 
166 

Iberagar acquired a Japanese company, Unialgas, and transferred its operations to a 
167 

plant in Barreiro, 30 km from Lisbon.  
168 

The carrageenan production in Iberian Peninsula began in the 1960's, when a 
169 

factory (CEAMSA, Marine Algae Company) was established in Galicia, Spain. At the 
170 

beginning, supply was dominated by the local resources of C. crispus and M. stellatus 
171 

combined with carrageenophytes imported from Canada and USA. Maximum level of 
172 

exploitation was attained the 1970's [18, 24]. This activity declined in the 1980's, 
173 

mainly due to the competition with developing tropical countries that produced 
174 

Euchema and Kappaphycus [24, 25]. 
175 

Recently some young companies (i.e. Algaplus, Wedotech, AlgaFuel, among 
176 

others) are initiating activities in order to harness the biotechnological potential of the 
177 

Iberian marine flora. In this context, the present manuscript describes the major groups 
178 

of seaweed-derived compounds that have been successfully commercialized, and/or 
179 

appear to be good candidates for future exploitation and commercialization.  
180 

 181 

2. POLYSACCHARIDES 182 

Macroalgae are known to be rich in polysaccharides, with concentrations that can 183 

vary in the range of 4 to 76% of dry weight [26]. Globally, these are mainly structural 184 

cell wall polysaccharides, although considerable amounts of mucopolysaccharides and 185 

storage polysaccharides can occur in specific species [27, 28]. 186 

 187 

 188 

2.1. Macroalgal Hydrocolloids (Phycocolloids) 189 

 Of all the polysaccharides, macroalgal hydrocolloids, or phycocolloids, are by far 190 

the most relevant in terms of their industrial commercialization, with an estimated 191 
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global value of approximately $US 1 billion in 2009 and representing more than half of 192 

the non-food macroalgal market products [29, 30]. 193 

Macroalgal hydrocolloids are high molecular weight, structural polysaccharides, 194 

found in the cell wall of freshwater and marine algae that typically form colloidal 195 

solutions, i.e. an intermediate state between a solution and a suspension. This property 196 

provides polysaccharides with the ability to be used as thickeners, gelling agents and 197 

stabilizers for suspensions and emulsions in diverse industries, including the food, 198 

biotechnological, paint, textile and biomedics (Table 2). To the present day, 199 

hydrocolloids of significant commercial value include the sulfated galactans, agar and 200 

carrageenans (obtained from red algae) and the alginates (obtained from brown algae). 201 

These are extracted in fairly high amounts from various algal raw materials, with 202 

maximum extraction yields obtained with hot water or alkaline solutions [31]. 203 

Specific European codes for different phycocolloids, as used in varied food 204 

industries as natural additives, are E400 (alginic acid), E401 (sodium alginate), E402 205 

(potassium alginate), E403 (ammonium alginate), E404 (calcium alginate), E405 206 

(propylene glycol alginate), E406 (agar), E407 (carrageenan) and E407A (semi-refined 207 

carrageenan or processed eucheuma seaweed). Note that presently hydrocolloids are 208 

gaining even more value in the food industry (and others) as a result of their potencial 209 

as robust functional food ingredients. 210 

 211 

 212 

Table 2. Applications of Macroalgal Phycocolloids (after [32-35]). 
213 

 214 

Use Phycocolloid Function 

Food additives   

Baked food 

agar 

kappa, iota, lambda 

carrageenan 

Improving quality and 

controlling moisture 

Beer and wine 
alginate 

kappa 

Promotes flocculation and 

sedimentation of 

suspended solids 

Canned and processed 

meat 

alginate 

kappa 

Hold the liquid inside the 

meat and texturing 

Cheese kappa Texturing 

Chocolate milk kappa, lambda 
Keep the cocoa in 

suspension 

Cold preparation puddings kappa, iota, lambda Thicken and gelling 
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Condensed milk iota, lambda Emulsify 

Dairy Creams kappa, iota Stabilize the emulsion 

Fillings for pies and cakes kappa Give body and texture 

Frozen fish alginate 
Adhesion and moisture 

retention 

Gelled water-based 

desserts 

kappa + iota 

kappa + iota + CF 
Gelling 

Gums and sweets 
agar 

iota 
Gelling, texturing 

Hot preparation flans kappa, kappa + iota 
Gelling and improve the 

mouth-feel 

Jelly tarts kappa Gelling 

Juices 
agar 

kappa, lambda 
Viscosity, emulsifier 

Low calorie gelatins kappa + iota Gelling 

Milk ice-cream kappa + GG, CF, X 

Stabilize the emulsion and 

prevent ice crystals 

formation 

Milkshakes lambda Stabilize the emulsion 

Salad dressings iota Stabilize the suspension 

Sauces and condiments 
agar 

kappa 
Thicken 

Soymilk kappa + iota 
Stabilize the emulsion and 

improve the mouth-feel 

Cosmetics 

 
  

Shampoos alginate Vitalization interface 

Toothpaste carrageenan Increase viscosity 

Lotions alginate 
Emulsification, elasticity 

and skin firmness 

Lipsticks alginate Elasticity, viscosity 

Medicinal and 

Pharmaceutical uses 
  

Dental mould alginate Form retention 

Laxatives 
alginate 

carrageenan 

Indigestibility and 

lubrication 

Tablets 
alginate 

carrageenan 
Encapsulation 

Metal poisoning carrageenan Binds metal 

HSV alginate Inhibit virus 

Industrial and Lab 

Uses 
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Paints alginate 
Viscosity and suspension, 

glazing 

Textiles agar, carrageenan Sizing and glazing 

Paper making alginate, agar, carrageenan Viscosity and thickening 

Analytical separation alginate, carrageenan Gelling 

Bacteriological media agar Gelling 

Electrophoresis gel agar, carrageenan Gelling 

   
   Non-seaweed colloids: CF - Carob flour; GG - Guar gum; X - Xanthan 

215 

 216 

 217 

Sulfated Galactans  218 

Sulfated galactans are abundant in red algae (but also found in brown and green 219 

algae), being the most common the agarans (agar) and the carrageenans. Typically, 220 

these polysaccharides have a linear backbone with repeating disaccharide units which 221 

are made of alternating 3-linked β-D-galactopyranose and 4-linked α-galactopyranose or 222 

3,6-anhydro-α-galactopyranose residues [36]. This “masked repeating” unit of 223 

disaccharides was first reported for the agar-like porphyran stereochemistry [37, 38]. 224 

 225 

Agar 226 

This hydrocolloid was the first to be discovered for applications and received its 227 

name from Malaysia, where it means “red alga”. The structure was initially believed to 228 

be a simple, sulfated poly-galactose polymer, but later studies demonstrated that agar 229 

consisted of a mixture of at least two polysaccharides, i.e. agarose and agaropectin [39]. 230 

Typically, agarose is the predominant fraction of agar (50-90% [40, 41]) and also the 231 

responsible for its gelling properties [41]. It consists of high molecular weight 232 

polysaccharides composed of repeating units of (13)-β-D-galactopyranosyl-(14)-233 

3,6-anhydro-α-L-galactopyranose (Fig. 1), although some variations can occur, 234 

depending on factors such as the species of seaweed, as well as environmental and 235 

seasonal conditions [39]. In turn, agaropectin is a less clearly defined, it is a more 236 

complex polysaccharide of lower molecular weight than agarose and it has  thickening 237 

properties [5, 39]. Its structure is essentially made up of alternating (13)-β-D-238 

galactopyranose and of (14)-3,6-anhydro-α-L-galacto-pyranose residues, where the 239 
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former can be modified by acidic side-groups which are primarily sulfate (up to 32%), 240 

plus uronate or pyruvate groups, as well by non-ionic methoxyl groups [39, 42].  241 

 242 

 243 

Fig. (1). Idealized structure of the chemical units of agarose. 244 

 245 

The gelation mechanism of agar is based on the ability of agarose to form double-246 

helix networks, in which each chain forms a left-handed, three-fold helix [43]. The latter 247 

becomes stable in the presence of water molecules, bound inside of the double helical 248 

cavity [44], together with exterior, hydroxyl groups which permit the aggregation of up 249 

to 10000 helices, with concomitant formation of microdomains of spherical microgels 250 

[45]. 251 

Remarkably, the reversible gels of agar are formed by simply cooling hot aqueous 252 

extraction solutions. In general, the agar gels are strong, but their rheological strength is 253 

greatly affected by sulfate substitution levels (i.e. stronger gels are obtained for those 254 

agars with lower sulfate levels) [39]. Other physicochemical factors affecting the gelling 255 

properties of agar include the molecular weight and substitution [46]. Indeed, agar may 256 

be modified by substitution of sulfate, pyruvate, uronate or methoxyl groups. Modern 257 

alkali treatment methods tend to increase the level of anhydrous bridging in the 258 

molecule, resulting in an enhancement of gel strength [39, 47]. 259 

Agar was, and still is prepared and sold as an extract in solution (hot) or in gel form 260 

(cold), to be used promptly in areas near the factories [6]. The product was known as 261 

“tokoroten”. Its industrialization as a dry and stable product began in the early 18th 262 

century and since then, has been called "Kanten". Presently, "agar-agar" and “agar” are 263 

the most accepted worldwide terms. However, it is also called “gelosa” in French- and 264 

Portuguese-speaking countries [6, 31, 48]. 265 

Agar production by modern techniques of industrial freezing (the gel is slowly 266 

frozen in order to eliminate water), started in California by Matsuoka, who registered 267 

his patents in the United States in 1921 and 1922 [39, 48, 49]. During the Second World 268 

War, the lack of available agar was a stimulus for countries with coastal resources of 269 



12 
 

Gelidum corneum (formerly Gelidium sesquipedale), which is very similar to the 270 

Gelidium pacificum used by the Japanese industry. In Portugal, the agar industry was 271 

started in Oporto, by Loureiro, while in parallel, J. Mejias and F. Cabrero (Spain) 272 

started the establishment of the Iberian agar industry [48]. Other European countries 273 

which did not have access to agarophytes tried to prepare agar substitutes from other 274 

seaweeds [31, 48]. 275 

Currently, the freeze-thawing technology remains in use, although most processors 276 

have adopted the press/syneresis technology (i.e. a method through which the absorbed 277 

water can be eliminated by means of an  applied force), or alternatively, a mixture of the 278 

two technologies [5, 48]. While the basic processes may not have changed, 279 

improvements in presses and freezing equipment must be noted. High-pressure 280 

membrane presses have greatly improved the dewatering of agar and thereby reduced  281 

energy requirements for final drying, prior to  milling to powder [29]. 282 

About 90% of the agar produced globally is for food applications [16]. The origin 283 

of agar as a food ingredient was in Asia, where it has been consumed for several 284 

centuries [5]. Agar has excellent qualities as a thickening, stabilizing and gelling agent, 285 

making it a crucial ingredient in the preparation of processed foods including fruit 286 

jellies, dairy products, fruit pastilles, chewing gum, canned meats, soups, confectionery 287 

and baked goods, icings, frozen and salted fish (Table 2) [39, 41]. Moreover, agar has 288 

satiating and gut-regulating characteristics contributing to its characteristics as an ideal 289 

fiber ingredient in the preparation of low-calorie food products. Furthermore, agar is 290 

tasteless and hence it does not interfere with the flavors of foodstuffs, in contrast to 291 

some of its competitive gums, where the addition of calcium or potassium salts is 292 

required to form gels. It is also important that agar has been classified as GRAS 293 

(Generally Recognized as Safe) by the United States of America, Food and Drug 294 

Administration (FAD), which has established maximum usage levels, depending on 295 

particular applications [6]. 296 

In addition to food applications, about 10% of all agar is currently being used for 297 

biotechnological applications (e.g. preparation of inert, solidified culture media for 298 

bacteria, microalgae, fungi, tissue culture as well as for separation of macromolecules 299 

by electrophoresis) [5, 16]. Although, agar applications are expected to increase in the 300 

near future, mainly because of the health-associated properties claimed for the gel. 301 

Indeed, agars are not digested by humans and therefore can be regarded as dietary fibers 302 

[50-52]. These are water-soluble and were found to be effective in the reduction of 303 
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obesity, hypercholesterolemia, diabetes [53] and intestinal cancer [28]. It has been 304 

reported that agar consumption leads to a decrease in the concentration of blood glucose 305 

and causes an anti-aggregation effect on red blood cells [28]. Antitumor activity was 306 

associated with a highly sulfated, agar-type polysaccharides derived from a cold water 307 

extraction of Gracilaria dominguensis, which inhibited the transplantation of Ehrlich 308 

ascites carcinoma in mice [54]. Agaro-oligosaccharides (AGO), obtained by hydrolysis 309 

of agar, have been shown to suppress the production of a pro-inflammatory cytokine 310 

and an enzyme associated with the production of nitric oxide (patented by Enoki et al. 311 

[55]). This anti-inflammatory activity of AGOs was recently reported in rats with 312 

chemically-induced colitis (by 2,4,6-trinitrobenzene sulfonic acid (TNBS)) and the 313 

results suggested that the oral administration of AGOs could be a possible therapeutic 314 

strategy for the treatment of the inflammatory bowel disease [56]. AGOs’ activity 315 

against α-glucosidase as well as its antioxidant ability has also been demonstrated [57]. 316 

Currently, agar is extracted from species of Gelidium and Gracilaria. Species of 317 

Pterocladiella, are closely related to Gelidium and small quantities of these are 318 

collected, mainly in the Azores (Portugal) and New Zealand. Gelidiella acerosa is the 319 

main source of agar in India. Ahnfeltia species have been used in both Russia (in 320 

particular the island of Sakhalin) and Japan. Gelidium spp. and Gracilaria spp. are 321 

collected in Portugal, Morocco, Tunisia and Chile for agar production [58, 59]. Along 322 

the Iberian Peninsula, the main agarophytes present are Gelidium corneum, G. 323 

spinosum, G. pulchellum, Pterocladiella capillacea, Gracilaria gracilis, G. multipartita, 324 

G. vermiculophylla, Gelidiella acerosa, and Ahnfeltia plicata (see Table 3) [3, 4, 19]. 325 

 326 

Carrageenans 327 

The first formal recognition of the gelling properties of boiled Fucus crispus were 328 

discovered by Turner in 1809, and this mucilaginous matter was named “carrageenin”, 329 

by Pereira (1840). The gelatinous, hot water-soluble mucilage of Chondrus crispus was 330 

first isolated by Schmidt (1844). Coincidentally, in the same year, Forchhammer 331 

reported on the high sulphur content of the ash from C. crispus [60]. The term 332 

“carrageenin” was later changed to “carrageenan” so as to comply with the “-an” suffix 333 

of terminology as applied to polysaccharides [1, 5]. 334 

Chemically, carrageenans are high molecular weight, sulfated D-galactans 335 

composed of repeating disaccharide units with alternating (13)-β-D and (14)-α-D-336 

galactose or (14)-3,6-anhydro-α-D-galactose residues. There are at least 15 different 337 
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carrageenan structures that are normally classified on the basis of distinct features, 338 

including the number and position of sulfate groups, the presence of 3,6-anhydro-D-339 

galactose and the conformation of the pyranose ring [61, 62]. 340 

The three most relevant commercial carrageenans are kappa (κ), iota (ι) and lambda 341 

(λ) carrageenans. The idealized, disaccharide repeating units of these carrageenans are 342 

given in Fig. 2. κ-carrageenans have alternating (13)-β-D-galactose-4-sulfate 343 

and(14)-3,6-anhydro-α-D-galactose units [37], while the -carrageenans have an 344 

additional sulfate group on C-2(O) of the (14)-3,6-anhydro-α-D-galactose sugars, 345 

resulting in two sulfates per disaccharide repeating unit [37]. Moreover, the -346 

carrageenans have an additional sulfate group linked to the C-6 position of the 4-linked 347 

residue, but in turn this is a (14)-α- D-galactopyranose [63]. 348 

 349 

 350 

 351 

Fig. (2). Idealized structure of the chemical units of nu (ν), iota (ι), lambda (λ), theta (θ), mu (μ), kappa 352 
(κ), xi (ξ) and beta (β) carrageenans. 353 

 354 

It should noted that in general seaweeds do not produce these idealized and pure 355 

carrageenans, but more likely a range of hybrid structures and/or precursors (Fig. 2). 356 
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When exposed to alkali conditions, the precursors (particularly mu and nu forms) are 357 

modified into kappa and iota, respectively, through formation of the 3,6-358 

anhydrogalactose bridge [64-66]. Other existing carrageenans include the xi (ξ), theta 359 

(θ) and beta (β) (Fig. 2). 360 

The main structural characteristics affecting the chemical and functional properties 361 

of carrageenans are the number and position of the ester sulfate groups on the repeating 362 

galactose units [67]. In general, the higher the sulfate levels, the lower the temperature 363 

of solubility and the gel strength of the carrageenan [47]. 364 

Indeed, although all carrageenans are highly flexible molecules, able to wind 365 

around each other to form double-helical zones, the ι and κ-carrageenans form gels, 366 

whereas λ-carrageenan does not. Gel formation in κ-carrageenan requires a gel-inducing 367 

agent and involves a coil-to-double helix conformational change, followed by the 368 

formation of an infinite network through aggregation of ordered molecules [68, 69]. The 369 

strongest gels of κ-carrageenan are formed with K
+
 rather than Na

+
, Li

+
, Mg

2+
, Ca

2+
, or 370 

Sr
2+

 [70, 71]. In contrast, ι-carrageenan gels are formed in the presence of Ca
2+

. In this 371 

particular case, the 2-sulfate group on the outside of the ι-carrageenan molecule does 372 

not allow the helices to aggregate as well as those of κ-carrageenan, although additional 373 

bonds occur through calcium interactions [47]. As a result, ι-carrageenan gels are more 374 

elastic than those of κ-carrageenan. At the industrial level, carrageenan gels can be 375 

recovered by alcohol precipitation, drum drying or freezing. 376 

The modern carrageenan industry dates from the 1940´s, receiving its impetus from 377 

numerous dairy applications. Carrageenans were found to be the ideal stabilizer for the 378 

suspension of cocoa in milk chocolate [1, 72]. These polysaccharides are “generally 379 

regarded as safe” (GRAS) and are presently the third most utilized stabilizer/emulsifier 380 

agents in the food industry (after gelatin of animal origin and starch of plant origin) 381 

[32]. The most common food applications of carrageenans include dairy creams, dessert 382 

mousses, salad dressings, bakery fillings, ice cream and instant desserts (Table 2). 383 

Carrageenan gels/emulsifiers also have several applications in other diverse industries, 384 

including the cosmetic, pharmaceutical, textile and paints [16, 26]. 385 

In addition, the biological properties of carrageens also provide them several 386 

(potential) applications. Carrageenans are traditionally used in the treatment of bowel 387 

problems such as diarrhea, dysentery and to make internal poultices to control stomach 388 

ulcers [73]. Also, carrageenan-bearing seaweeds, namely Irish Moss (Chondrus crispus 389 

and Mastocarpus stellatus) are traditionally consumed in the form of teas and other kind 390 
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of medicines to combat colds, bronchitis and cronic coughs [26]. Moreover, the 391 

anticoagulant activity of carrageenans and inhibition of human blood platelet 392 

aggregation has been reported [74]. Among the carrageenans, λ-carrageenan from C. 393 

crispus has approximately twice the activity of unfractionated carrageenan and four 394 

times the activity of κ-carrageenan (Kappaphycus alvarezii – formerly Eucheuma 395 

cottonii). The most active carrageenan has approximately 1/15 of the activity of heparin 396 

[74], an animal-derived highly sulfated, glycosaminoglycan, widely used as an 397 

injectable anticoagulant. It seems that this biological activity is based on the 398 

antithrombotic properties of carrageean [26]. Additionally, applications of carrageenan 399 

gels from C. crispus may block the transmission of the human papillomavirus types 400 

(that can cause cervical cancer), of HIV, as well as other sexually transmitted diseases 401 

(STD), viruses such as gonorrhoea, genital warts and the herpes simplex virus (HSV) 402 

[26]. 403 

The first source of carrageenans was the red seaweed Chondrus crispus, which 404 

continues to be used in restricted quantities. Betaphycus gelatinum is used for the 405 

extraction of β-carrageenan. Presently, wild-harvested genera such as Chondrus, 406 

Furcellaria, Gigartina, Chondracanthus, Sarcothalia, Mazzaella, Iridaea, Mastocarpus, 407 

and Tichocarpus are, some of them, also cultivated as carrageenan raw materials [64].  408 

Producing countries include Argentina, Canada, Chile, Denmark, France, Japan, 409 

Mexico, Morocco, Portugal, North Korea, South Korea, Spain, Russia, and the USA [1, 410 

29].  411 

Some South American red algae, which were only used traditionally in minor 412 

quantities, have more recently attracted attention from carrageenan producers, as they 413 

seek to increase diversification of raw material supplies of carrageenophytes with 414 

different physical functionalities of their extracted gels [16, 61]. In this context, 415 

Gigartina skottsbergii, Sarcothalia crispata and Mazzaella laminaroides are being 416 

harvested from natural populations in Chile and Peru, though the recent earthquake in 417 

Chile (February 27th, 2010) caused the elevation of intertidal areas and the consequent 418 

large losses of harvestable biomass [5]. Small quantities of Gigartina canaliculata are 419 

harvested in Mexico while Hypnea musciformis has been used in Brazil [1, 16]. 420 

Large carrageenan processors have fuelled increased farming activities of 421 

Kappaphycus alvarezii (commercial name “cottonii”) and Eucheuma denticulatum 422 

(commercial name “spinosum”) in several countries including Indonesia, Malaysia, 423 

Philippines, Tanzania, Kiribati, Fiji, Kenya and Madagascar [16]. Indonesia has recently 424 
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overtaken the Philippines as the world‘s largest producer of dried carrageenophyte 425 

biomass.  426 

Shortages of carrageenan-producing seaweeds suddenly appeared in mid-2007, 427 

consequently doubling the price of carrageenans [61]. Probably, this reduced access to 428 

carrageenophytes biomass resulted from a combination of environmental factors. 429 

Monocultures of some carrageenophytes, such as Kappaphycus alvarezii, have 430 

encountered several problems when submitted to environmental changes as well as an 431 

increased susceptibility to diseases. The problems with ice-ice and epiphytes have 432 

resulted in large scale crop losses [75-77]. 433 

The main carrageenophytes from the Iberian Peninsula are Chondrus crispus, 434 

Gigartina pistillata, Calliblepharis jubata, C. ciliata, Chondracanthus teedei var. 435 

lusitanicus, C. acicularis, Mastocarpus stellatus, Gymnogongrus crenulatus, 436 

Ahnfeltiopsis devoniensis, and Caulacanthus ustulatus (Table 3) [1, 64, 23]. It should be 437 

noted that, in addition to the traditionally harvested carrageenophytes in the northwest 438 

of the Iberian Peninsula (i.e. northern coast of Portugal and Galicia) [18, 78, 79], C. 439 

teedei var. lusitanicus is clearly a potential source of industrial co-polymers of 440 

carrageenan from the Iberian Peninsula. This algae has a high content of kappa/iota and 441 

xi/theta carrageenans and it is widespread on the north coast of Iberian Peninsula [80, 442 

81].  443 

 444 

 445 

Table 3. Documented and potential Iberian sources of seaweeds products with current 446 

or future commercial significance 447 

Compound Uses Documented sources Potential sources 

Agar Thickener, emulsifier, and 

gelling agent. 

 

Gelidium corneum (formerly G. 

sesquipedale), Gelidium 

microdon, Pterocladiella 
capillacea (Rhodophyta) 

 

Gracilaria spp., Gelidium 

spinosum, G. pulchellum, Gelidiella 

acerosa, and Ahnfeltia plicata 

(Rhodophyta) 

Alginate Thickener and emulsifier. 

Drug delivery systems. 

Relevant to meat processing 
and pet food production. 

 

Laminaria spp. (Phaeophyceae) Ascophyllum nodosum, Bifurcaria 
bifurcata, Laminaria spp., and 

Saccorhiza polyschides 

(Phaeophyceae) 

Carrageenan Thickener, emulsifier, and 
gelling agent.  

Pet food production. 

Antiviral. 
 

Chondrus crispus, Mastocarpus 
stellatus (Rhodophyta) 

Chondracanthus spp., 
Calliblepharis spp., Gigartina 

pistillata (Rhodophyta) 

Fucoidan Anti-aging, antimicrobial, 

antitumor, anticoagulant, anti-
inflammatory, contraceptive. 

 

 Fucales and Laminariales 

(Phaeophyceae) 

Fucoxanthin Anti-obesity, antidiabetic, anti-
inflammatory, antimalaria, anti-

aging, antitumor and 

 Ascophyllum nodosum, Himanthalia 

elongata, Fucus spp., Laminaria 

spp., and Undaria pinnatifida 
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neuroprotective. 
 

(Phaeophyceae) 

Phycoerythrin Used in the cosmetic industry 

for production of lipsticks, 
eyeliners and other cosmetics. 

Potential use on nutritional 

supplements. 
 

 Corallina elongata, Gracilaria 

gracilis, Grateloupia turuturu, and 
Palmaria palmata (Rhodophyta) 

Phlorotannins 

 

Antioxidant, anti-inflammatory, 

algicidal and bactericidal. 

 Brown alga 

 

Terpenoids 

 
Antitumor, antiviral, and 

antifouling agent. 

  
Dictyotaceae (Phaeophycaeae) and 

Laurencia/Osmundea spp. 

(Rhodophyta) 

 

Ulvan 

 

Antiviral, antitumor, 
anticoagulant, anti-

hyperlipidemic, and immuno-

stimulating. 

 

  

Ulva spp. and other Ulvales 
(Chlorophyta) 

Dietary fibers, 

proteins, and 

vitamins 

Gastronomic use. Chondrus crispus, Mastocarpus 

stellatus, Palmaria palmata, 
Porphyra spp. (Rhodophyta), 

Laminaria spp., Saccharina 

latissima (Phaeophyceae) 

Chondracanthus spp., Gracilaria 

spp., Grateloupia turuturu, 
Osmundea pinnatifida 

(Rhodophyta), Codium tomentosum, 

Ulva spp. (Chlorophyta), Undaria 
pinnatifida (Phaeophyceae) 

 448 

 449 

Uronates (Alginates)  450 

“Alginate” is the term usually used for the salts of alginic acid, although this is also 451 

commonly used to refer to all the derivatives of alginic acid and to alginic acid itself. 452 

Some authors use the term “algin” (i.e. the name given by E.C.C. Stanford to alginic 453 

acid by the time of its discovery, in the 1880´s [82]. Alginic acid is present in the cell 454 

walls of brown seaweeds, where it is partially responsible for their flexibility. In this 455 

context, brown seaweeds that grow in more turbulent conditions usually have higher 456 

alginate content than those in calmer waters [16]. 457 

Chemically, alginates are linear copolymers of β-D-mannuronic acid (M) and α-L-458 

guluronic acid (G) (14)-linked residues, arranged either in heteropolymeric (MG) 459 

and/or homopolymeric (M or G) blocks (see Fig. 3) [61, 79, 83]. Alginates extracted 460 

from different sources differ in their M and G ratios, as well as on the length of each 461 

block. It is noted that more than 200 distinct alginates are presently produced [84]. 462 

Importantly, mannuronic acid residues establish β-(14) linkages, while guluronic acid 463 

forms α-(14) linkages. As a consequence, M-block segments have a linear and 464 

flexible conformation whereas the G-block segments cause a folded and rigid structural 465 

conformation, which is responsible for a pronounced stiffness of the polymer [47]. It is 466 

accepted that only G-blocks participate in the gel formation and hence, their length is a 467 

main factor affecting the functional properties of the gels [85].     468 

http://en.wikipedia.org/wiki/Phlorotannin
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  469 

 470 

Fig. (3). Idealized structure of the chemical units of poly L-guluronic acid (G blocks), poly D-mannuronic 471 

acid (M blocks) and alternate L-guluronic and D-mannuronic acid (GM blocks) in alginates. 472 

 473 

Ionic cross-linking with divalent ions (e.g. calcium) is the most common method of 474 

obtaining hydrogels from an aqueous alginate solution, in a model that is termed “egg-475 

box” [86, 87]. In this model, the divalent cations are trapped in a stable, continuous and 476 

thermo-irreversible, three dimensional network, allowing interaction with COO
-
 groups 477 

of guluronate residues, of two adjacent G-block polymers chains (junctions). This 478 

results in a gel structure [87].  479 

Algins/alginates are commercially available in both acid and salt forms. These are 480 

typically extracted by treating the seaweeds with aqueous alkali solutions (NaOH) [88] 481 

that converts all the alginate to the sodium salt. Later the salt is dissolved in water and 482 

separated from the seaweed residue by filtration [16, 89, 90]. The alginate salt can be 483 

transformed into alginic acid by treatment with dilute HCl [84]. 484 

About 30 years ago, almost all extraction of alginates took place in Europe, USA 485 

and Japan. This picture is now changing since the emergence of producers in China in 486 

the 1980´s [29]. Initially, this production was limited to low cost (low quality) alginate 487 

for the internal, industrial markets produced from locally cultivated Saccharina 488 

japonica. In the 1990´s, Chinese producers were competing in western, industrial 489 

markets to sell alginates, primarily based on low cost [5]. 490 
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Alginates have several commercial applications based on their thickening, gelling, 491 

emulsifier and stabilizing abilities. They are used in the food industry for improving the 492 

textural quality of numerous products such as salad dressing, ice-cream, beer, jelly and 493 

lactic drinks, but also in cosmetics, pharmaceuticals, textiles and painting industries 494 

(Table 2)  [28, 91].  495 

Moreover, due to its outstanding properties in terms of biocompatibility, 496 

biodegradability, non-antigenicity and chelating abilities, the use of alginates in a 497 

variety of biomedical applications (e.g. tissue engineering, drug delivery and in some 498 

formulations of preventing gastric reflux) is growing [84]. The use of alginates and/or 499 

alginate derivatives as remedies for the treatment of gastritis and gastroduodenal ulcers 500 

is protected by patents in several countries [72]. Also, numerous products of alginate-501 

containing drugs, like “Gaviscon”, have been shown to effectively suppress 502 

postprandial (after eating) acidic refluxes, binding of bile acids and duodenal ulcers in 503 

humans [92].  504 

The binding capacity of alginates also includes cholesterol/lipids that are then 505 

eliminated from the digestive system and result in hypocholesterolemic and 506 

hypolipidemic responses, as well as an antihypertension effects [72]. This is often 507 

coupled with an increase in the faecal cholesterol content and a hypoglycaemic 508 

response. Furthermore, and since alginates bind to divalent metallic ions, heavy metals 509 

taken into the human body are gelated or rendered insoluble in the intestines and cannot 510 

be absorbed into the body tissue [93]. 511 

Additional biological properties of alginates that might potentiate their applications 512 

in the future include their antibacterial activity [26], anticancer [28], antitoxic effects on 513 

hepatitis [93] and prevention of obesity and diabetes [94].  514 

A good raw material for alginate extraction should also give a high polysaccharide 515 

yield. Brown seaweeds that fulfill the above criterion include species of Ascophyllum, 516 

Durvillaea, Ecklonia, Fucus, Laminaria, Saccharina, Lessonia, Macrocystis and 517 

Sargassum. However, Sargassum is only used as a “last resource” because its alginate is 518 

usually of borderline quality and the yield is also low [16, 95]. 519 

Ascophyllum nodosum, Fucus spp., Laminaria hyperborea, L. ochroleuca, 520 

Sargassum vulgare, S. flavifolium, S. muticum, Saccorhiza polyschides, Saccharina 521 

latissima, Bifurcaria bifurcata and Padina pavonica represent the main alginophytes 522 

which occur along the Iberian Peninsula (Table 3) [3, 4, 19]. 523 

 524 
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Ulvans 525 

The name “ulvan”, as first proposed by Lahaye and Axelos in 1993, refers to  acidic 526 

water-soluble single sulfated heteropolysaccharides which are present in the cell walls 527 

of green seaweeds (Ulva and as previously know Enteromorpha), where it contributes 528 

to the maintenance of the osmolar stability and the protection of the cell [96]. The yield 529 

of ulvans ranges from 8 to 29% of the algal dry weight [97]. 530 

The sugar composition of ulvans is extremely variable but uronic acids (i.e. 531 

glucuronic acid and iduronic acid), sulfated rhamnose, xylose and glucose have been 532 

identified as the main constituents of the polymer [96, 98]. The presence of iduronic 533 

acid in the ulvan polysaccharide chain is a striking characteristic of these 534 

polysaccharides and is unique amongst algae [99]. This feature also renders ulvans a 535 

close similarity to mammalian glycosaminoglycans.  536 

In general, the structure of ulvans is influenced by taxonomy (i.e. species used) and 537 

ecophysiology (i.e. geographical distribution of species, age/maturity, environmental 538 

conditions, seasonality, etc.) factors [97]. In addition, methods of extraction also have 539 

impacts. This obviously has an enormous impact on variability and hampers the 540 

establishment of an accurate structure for the ulvans. Nevertheless, it is now generally 541 

accepted that the backbone of ulvans is mainly composed of repeating sequences of 542 

aldobiuronic acid disaccharides, in particular of β-D-glucuronosyluronic acid-(14)-α-543 

L-rhamnosyl-3-sulfate [(β-D-GlcpA-(14)-α-L-Rha-3-SO3
-
), named as ulvanobiuronic 544 

acid A or A3s] or of α-L-iduronosyluronic acid-(14)-α-L-rhamnosyl-3-sulfate [(α-L-545 

IdopA-(14)-α-L-Rhap-3-SO3
-
), named as ulvanobiuronic acid B or B3s] (see Fig. 4). 546 

Additionally, other repeating units in ulvans have been reported, namely the 547 

ulvanobiose 3-sulfate [U3s, 4)-β-D-Xyl-(14)-α-L-Rha-3-SO3
-
-(1]] and 548 

ulvanobiose 2’,3-disulfate [U2´s3s, 4)-β-D-Xyl-2-SO3
-
-(14)-α-L-Rha-3-SO3

-
-(1] 549 

[97-100]. 550 

 551 

 552 

 553 
 554 
 555 
 556 
 557 

 558 
 559 
 560 
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  561 
 562 

Fig. (4). Structure of the main repeating disaccharides found in ulvan, ulvanobiuronic acids A3s and B3s, 563 
and ulvanobioses U3S and U2′s 3s 564 

 565 

Ulvans form thermoreversible gels, without thermal hysteresis, by a unique and 566 

complex mechanism which is believed to occur through the formation of borate esters 567 

with ulvan 1,2-diols, followed by cross-linking via Ca
2+

 ions [101]. Optimal gelling 568 

conditions thus require the presence of boric acid and calcium ions, at slightly basic 569 

conditions (pH 7.5). Since the gel is thermoreversible, the “junction-zones” that 570 

crosslink the polymer are thought to include weak linkages, probably based on labile 571 

borate ester groups and ionic interactions that are easily disrupted by thermal treatments 572 

[97]. 573 

Overall, the gelling properties of ulvans offer them a potential application where 574 

texture needs to be precisely controlled (by pH or temperature), such as those designed 575 

for the release of entrapped molecules or particles under specific physicochemical 576 

conditions  [26, 102]. Commercial applications of these gels are undoubtedly fewer than 577 

those of other hydrocolloids, although other properties of these polysaccharides provide 578 

them with potential industrial applications in several areas, including the chemical, 579 

pharmaceutical, biomedical and agricultural, amongst others [103-105]. Indeed, fine 580 

chemicals may be produced from rare, sugar precursors obtained from ulvan biomass. 581 

Ulvan is enriched in rhamnose (a rare sugar) which is used in the synthesis of aromas 582 

[97]. The production of this sugar from Monostroma has been patented. L-rhamnose is 583 

also an essential component of the surface antigens of many microorganisms, and is 584 
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specifically recognized by a number of mammalians lectins. Hence, ulvan applications 585 

in pharmaceutical domains are expected to increase [97]. Apart from the rhamnosyl 586 

units, ulvan is also a source of iduronic acid, which is another rare sugar required in the 587 

synthesis of heparin analogues with antithrombotic activities [100]. 588 

Besides monomers, it has been demonstrated that ulvan (polymer) and its 589 

oligosaccharides have applications related to their biological properties, including 590 

antitumor and immune modulation, anticoagulant, antioxidant, strain-specific anti-591 

influenza, hepatoprotection, protection of the colonic mucosa, modulation of lipid 592 

metabolism and a decrease of the atherogenic index [96, 97, 106].  593 

Notably, the strategy of chemical cross-linking ulvans overcomes previous 594 

limitations for their application in tissue engineering (due to mechanical instability and 595 

uncontrolled dissolution in physiological conditions) [107]. Alves and co-workers 596 

combined ulvan with poly-D,L-lactic acid (PDLLA) in order to produce a novel scaffold 597 

for bone-tissue engineering applications. This matrix was then characterized (by micro-598 

computed tomography, mechanical compression testing, water uptake and degradation 599 

testing and cytotoxicity assays); the results demonstrated appropriate physicochemical 600 

and cytocompatible features for the envisaged applications [104]. In addition, ulvan 601 

particles loaded with dexamethasone dispersed within the PDLLA matrix showed an 602 

adequate release profile of the steroid drug, suggesting that this system can be 603 

potentially suitable for localized drug delivery [104]. Cross-linked ulvan membranes 604 

also confirmed their potential as drug delivery devices and suggest a great potential of 605 

these natural sulfated polysaccharides in wound dressings [105]. These results further 606 

contribute to the establishment of ulvan as a potential novel biomaterial. 607 

Applications of ulvans in animal feed detoxification were also patented, based on 608 

the capacity of ulvan to intercalate into clay opening the way for the synthesis of new 609 

nanocomposites of interest with use in different areas. Moreover, besides the traditional 610 

use as a fertilizer, the elicitation of plant defenses has been added to ulvan bioactivities, 611 

including  nitrogen uptake improvement and disease resistance [97].  612 

The mechanisms by which ulvans interfere with the different biological systems are 613 

yet to be identified. They may do it in diferent ways, such as targeting specific cell 614 

receptors where ulvan competes amongst other molecules and/or physicochemical 615 

properties related to particular ion-exchange. The latter mentioned interactions are at the 616 

basis of choice of these seaweeds as bioindicators for monitoring coastal water heavy 617 

metal pollutions [73, 106, 108] and could be further exploited to develop ion exchangers 618 
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from ulvalean cell walls, with particular ion selectivity for industrial effluents de-619 

pollution or the enrichment of food, feed, or soils with specific trace mineral elements  620 

[109].  621 

In general, ulvans can be solubilized by hot water [99], with higher molecular 622 

weight polysaccharides, being obtained in the range 80-90 °C, when compared to those 623 

extracted with temperatures above 100°C [97]. Ulvans can also be extracted with 624 

sodium carbonate solution, with calcium chelating agents (e.g. ammonium oxalate or 625 

ethylenediaminetetraacetic) or with acidic solutions [ 98, 100]. Calcium chelating agents 626 

sequester calcium ions and disrupt the ulvan chemical bonds, within the cell wall and 627 

hence facilitate their solubilization [99]. An increased yield of ulvans is likewise 628 

obtained for low pH extraction solutions, due to the de-stabilisation of ulvan aggregates 629 

[98]. In general, the most employed method for extracting ulvans employs the use of 630 

high temperature water (80-90°C), containing ammonium oxalate as a divalent cation 631 

chelator, followed by the recovery of the polysaccharides by ethanol precipitation [ 632 

102]. Additional purification processes are fundamental to clean-up the contaminating 633 

matter, such as lipids and pigments (as removed by Soxhlet extraction, or by organic 634 

solvents - acetone or ethanol), proteins (proteinase k) and starch (α-amylase) [99]. 635 

Regarding the macroalgae of the Iberian Peninsula, ulvans could be produced from 636 

Ulva clathrata, U. compressa, U. intestinalis, U. lactuca, U. linza, U. prolifera, U. 637 

rigida (Chlorophyta, Ulvales) and Monostroma latissimum (Chlorophyta, Ulotrichales). 638 

These species are distributed on an almost worldwide basis, growing in the intertidal 639 

and subtidal zones, attached to hard substrata or as free-living forms. In addition, they 640 

are also considered opportunistic seaweeds and proliferate in eutrophic coastal waters. 641 

Despite this, and taking into account its biotechnological potential, green algae remain 642 

largely unexploited in the commercial arena, providing an opening window of 643 

opportunity for future research [99].  644 

 645 

2.2. Fucoidans  646 

Fucoidans are a complex series of sulfated polysaccharides found widely in the cell 647 

walls of brown seaweeds, where they are thought to play a protective role against the 648 

effects of desiccation [26]. These polysaccharides were first isolated by Kylin in 1913 649 

and named as “fucoidin”. Presently, they are mainly named according to the IUPAC 650 

terminology (fucoidans), although other terms such as fucans, fucosans, fucose 651 

containing polymers or sulfated fucans have also been adopted [110]. 652 
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For the majority of algal sources, the chemical composition of fucoidans is mainly 653 

composed of fucose and sulfate, together with minor amounts of distinct molecules 654 

(Table 4), that can vary from monosaccharides (i.e. mannose, glucose, galactose, xylose, 655 

etc.), acidic monosaccharides, acetyl groups to proteins [110]. Fucoidans with a low 656 

fucose content are also found in nature.  657 

 658 

 659 

Table 4. Composition of some fucoidans and/or water extracts from brown seaweed 660 

(based on [110-112]). 661 
 662 

Seaweed specie 
 

Order 
 

Chemical composition* 

Adenocystis utricularis 

 

Ectocarpales 

 

fucose, galactose, mannose, xylose, GlcA, sulfate 

Ascophyllum nodosum** 

 

Fucales 

 

fucose (49%), xylose (10%), GlcA (11%), sulfate 

Bifurcaria bifurcata** 

 

Fucales 

 

fucose, xylose, mannose, glucose, galactose, sulfate 

Chorda filum** 

 

Laminariales 

 

fucose, xylose, mannose, glucose, galactose, uronic 

acid, sulfate 

Cladosiphon okamuranus 

 

Ectocarpales 

 

fucose, glucose, uronic acid, sulfate 

Dictyota menstrualis** 

 

Dictyotales 

 

fucose/xylose/galactose/sulfate (1/0.5/2/2) 

Ecklonia kurome 

 

Laminariales 

 

fucose, galactose, mannose, GlcA, glucose, xylose, 

sulfate 

Fucus distichus 

 

Fucales 

 

fucose/sulfate/acetate (1/1.21/0.08) 

Fucus evanescens 

 

Fucales 

 

fucose/sulfate/acetate (1/1.23/0.36) 

Fucus serratus** 

 

Fucales 

 

fucose/sulfate/acetate (1/1/0.1) 

Fucus spiralis** 

 

Fucales 

 

fucose, xylose, mannose, glucose, galactose, uronic 

acid, sulfate 

Fucus vesiculosus** 

 

Fucales 

 

fucose,sulfate 

Himanthalia elongata** 

 

Fucales 

 

fucose, xylose, GlcA, sulfate 

Laminaria hyperborea** (formerly 

Laminaria cloustonii) 

 

Laminariales 
 

fucose, galactose, xylose, uronic acid, sulfate 

Laminaria digitata** 

 

Laminariales 
 

fucose, xylose, mannose, glucose, galactose, uronic 

acid, sulfate 

Lessonia flavicans (formerly 

Lessonia vadosa) 

 

Laminariales 

 

fucose/sulfate (1/1.12) 

Macrocystis pyrifera 

 

Laminariales 

 

fucose/galactose (18/1), sulfate 

Padina pavonica** 

 

Dictyotales 

 

fucose/galactose, sulfate (9/1/9) 

Saccharina angustata (formerly 

Laminaria angustata) 

 

Laminariales 

 

fucose, galactose, mannose, xylose, GlcA, sulfate 

Saccharina religiosa (formerly 

Laminaria religiosa) 

 

Laminariales 

 

fucose, xylose, mannose, glucose, rahmnose, uronic 

acid, sulfate 

Sargassum acinarium (formerly 

Sargassum linifolium) 

 

Fucales 

 

fucose, mannose, galactose, xylose, uronic acid 

Sargassum fusiforme (formerly 

Hizikia fusiformis) 

 

Fucales 

 

fucose/xylose/uronic acid/galactose/sulfate 

(1/0.8/0.7/0.8/0.4) and (1/0.3/0.4/1.5/1.3) 

Sargassum stenophyllum 

 

Fucales 

 

fucose, galactose, mannose, sulfate 

Silvetia babingtonii (formerly 

Pelvetia wrightii) 

 

Fucales 

 

fucose/galactose (10/1), sulfate 

Undaria pinnatifida** 

 

Laminariales 
 fucose, mannose, xylose, rhamnose, galactose, glucose, 

sulfate 

Undaria pinnatifida (Mekabu)   Laminariales   fucose/galactose (1/1.1), sulfate 



26 
 

 663 

 664 

Notably, the structure of fucoidans has been described to vary significantly  665 

between macroalgal species and even within species, even though the latter can be 666 

mainly attributed to the distinct extraction conditions applied [9, 110]. 667 

Regardless of the enormous variability of fucoidans, two general groups are 668 

assumed for their backbones: The type I polymers, which contain a large proportion of 669 

repeating (13)-linked -L-fucopyranose residues and the type II polymers which 670 

typically have alternating (13)- and (14)-linked -L-fucopyranose residues. In such 671 

polymers, sulfation may occur at positions 2, 3 and 4 and the monosaccharides are 672 

associated via -12, -13, or -4 glycosidic bonds [113]. In general, Type I 673 

fucoidans are found in Saccharina latissima, Analipus japonicas, Chorda filum, 674 

Cladosiphon okamuranus and Laminaria digitata, while Type II fucoidans include 675 

those isolated from the order of Fucales (i.e. Ascophyllum nodosum and Fucus species) 676 

[37, 114]. Individual representative structures of Type I and II fucoidans are depicted in 677 

Fig. 5.  678 

Fucoidans with a high content of uronic acid (UA) and hexose may have a 679 

backbone built of alternating UA-hexose, due to the high stability of this structure. 680 

Other monosaccharide residues are normally observed in the fucoidans branches [110]. 681 

Fucus vesiculosus is the seaweed most enriched in fucoidans (up to 20% on a dry 682 

weight basis). This polysaccharide was first believed to comprise a linear structure 683 

mainly composed of (1→2)-linked 4-O-sulfated fucopyranose residues [115], but later 684 

Patankar et al. [116] rebuilt its structure model and established that the backbone of this 685 

fucoidan was a fucose polymer, bonded through -(13) with a sulfate group, 686 

substituted at C-4, in several fucose residues and with branched fucose (linked to 687 

fucose) moieties appearing in every 2-3 residues. More recently, Chevolot et al. [117] 688 

reported that the fucoidan from F. vesiculosus (and of Ascophyllum nodosum) have a 689 

core disaccharide motif of Type II containing sulfate at the 2-position of the 3-linked 690 

fucose and sulfate groups on the 2- and 3-positions of the 4-linked fucose (see structure 691 

in Fig. 5B) [37, 118]. 692 

 693 

 694 

 695 

*Fucoidans were obtained by acidified or alkali/water solutions, followed by precipitation, mostly with ethanol.  

**Present in the Iberian flora. 
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 696 

 697 

 698 
  699 
   700 
 701 

 702 
 703 
Fig. (5). Representative chemical structures of Type I (A) and Type II (B) fucose-containing sulfate 704 
polysaccharides described in several seaweed species.   705 

 706 

Structural features of fucoidans from other Fucus species have also been described. 707 

As reported by Bilan et al. [119-121], the fucoidans from F. evanescens C. Ag, F.  708 

distichus and F. serratus L. are also composed of fucose, sulfate and acetate, with 709 

structural variations. In particular, the fucoidan from F. evanescens has a linear 710 

backbone of alternating 3)--L-Fucp-(2-SO3
-
)-(14)--L-Fucp(2-SO3

-
)-(1 711 

disaccharides, with the 3-linked fucose residues being randomly sulfated or acetylated 712 

in the position 4 (see structure in Fig. 5B) [110, 120]. Instead, F. distichus is mainly 713 

composed of disaccharide repeating units 3)-α-L-Fucp-(2,4-di-SO3
-
)-(14)-α-L-714 
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Fucp-(2-SO3
-
)-(1, where only slight variations might exist by random acetylation and 715 

sulfation of several disaccharide repeating units (see structure in Fig. 5B) [37, 121].  716 

The fucoidan from F. serratus L. has a branched structure. Its core backbone, as 717 

depicted in Fig. 5B, is mainly composed of 3)-α-L-Fucp-(14)-α-L-Fucp-(1 718 

repeating units, in which half of the 3-linked residues are substituted by α-L-Fucp-719 

(14)-α-L-Fucp-(13)-α-L-Fucp-(1 trifucoside units at C-4 [119]. Sulfate groups 720 

occupy mainly C-2 and sometimes C-4, although 3,4-diglycosylated and some terminal 721 

fucose residues may be nonsulfated. Acetate groups occupy C-4 of 3-linked Fuc and C-722 

3 of 4-linked Fuc in a ratio of about 7:3 [119]. 723 

Atypical fucoidans were described for several seaweeds, e.g. Himanthalia elongata 724 

and Bifurcaria bifurcata, for which the fucoidan structure has a main backbone of 725 

(12)- and (13)-alternating fucose residues with sulfation at C-4 and (14)-GlcA 726 

and (14)-Xyl linked non-sulfated residues, appear at the periphery of highly branched 727 

molecules [110, 122]. 728 

The extraction method for fucoidans can be quite simple. A native extraction with 729 

hot water can result in a good method, but an acid extraction or a combined hot acidic 730 

extraction with ethanol precipitation is the most commonly applied method [110, 113]. 731 

The variation of extraction methods is known to result in the extraction of structurally 732 

distinct fucoidans [110, 113]. 733 

The commercial importance of fucoidans is presently much lower than that of 734 

seaweed hydrocolloids however, these polysaccharides are attracting considerable 735 

attention because of the growing market for them as bioactive polysaccharides in wide 736 

areas of applications [30]. More recently, anticoagulant and antithrombotic activities are 737 

the most studied effects of fucoidans. Commonly, the anticoagulant activity of 738 

fucoidans is mediated through the activation of thrombin inhibitors, although direct 739 

thrombin inhibition and competitive binding of fibrinogen to block thrombin’s actions 740 

are also possible [30, 123]. 741 

Previous studies reported that the anticoagulant functionalties of fucoidans 742 

extracted from F. vesiculosus and Eklonia cava were due to thrombin-inhibition-743 

mediated via plasma antithrombin-III, and their anticoagulant activity was similar to 744 

that of heparin [37, 110, 114]. Moreover, fucoidans from Saccharina longissima, S. 745 

latissima, L. digitata, F. serratus, F. distichus, and F. evanescens, A. nodosum were also 746 

described to reveal strong anticoagulant activity in vitro and in vivo models [110, 113].  747 
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In general, structural-bioactive studies suggested that the anticoagulant 748 

/antithrombin activities of fucoidans are mainly dependent on the content and/or 749 

positioning of sulfate groups, as well as the molecular weight of the polymer [110]. 750 

Moreover, monomeric composition, types of linkages and branching might exert 751 

moderate modulation on biological properties of fucoidans [30, 37, 114]. In this context, 752 

it is possible that the greater anticoagulant/antithrombin activities exhibited by longer 753 

fucoidans are due to the higher content of fucose and sulfate groups [37, 110, 114], 754 

though this is still under debate.  755 

Fucoidans are also reported to inhibit the replication of several enveloped viruses 756 

such as human immunodeficiency and human cytomegalovirus, among others [37, 110]. 757 

The mechanisms for such activity are thought to occur via inhibition of cell infection by 758 

viral sorption or due to hampering of viral-induced syncytium formation [110, 114]. 759 

Fucoidans from Saccharina japonica, Cladosiphon okamuranus, Adenocystis 760 

utricularis, Stoechospermum marginatum, Cystoseira indica, Dictyota mertensii, 761 

Lobophora variegata, Fucus vesiculosus, Spatoglossum schroederi and Undaria 762 

pinnatifida (cultivated plus wild types) showed impressive positive results in vitro and 763 

in vivo models of infection by poliovirus III, adenovirus III, ECHO6 virus, coxsackie 764 

B3 virus, coxsackie A16, Newcastle Disease Virus (NDV), HSV-1, HSV-2 , HIV and 765 

avian reverse transcriptase [110, 114]. 766 

Antitumor activities of fucoidans include the inhibition of tumor proliferation, the 767 

stimulation of tumor cells apoptosis, blocking of tumor cell metastasis and enhancement 768 

of various immune responses [124]. In this context, fucoidans from several macroalgal 769 

species (e.g. Saccharina japonica, S. latissima, Laminaria digitata, Fucus serratus, F. 770 

distichus and F. vesiculosus) proved to be useful and are regarded as good candidates 771 

for future cancer therapy [110, 114]. Besides those, the commercial fucoidans branded 772 

Tokida (from cultured Cladosiphon okamuranus) and that from the Korean cultured 773 

sporophyll (Miyeokgui) of Undaria pinnatifida also revealed promising antitumoral 774 

activities, as tested in in vitro models [114].  775 

Other important biological activities of fucoidans include antioxidant, anti-776 

inflammatory and anti-allergic, although others cannot be overlooked (e.g. 777 

hepatoprotection, cardioprotection, stomach protection and anti-obesity) [37, 110, 114]. 778 

Examples of fucoidans showing promising antioxidant in in vitro models include those 779 

obtained from S. japonica, Canistrocarpus cervicornis, F. vesiculosus, Dictyota 780 

cervicornis, Sargassum filipendula, Dictyopteris delicatula and S. japonica [37, 110, 781 
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114], while the anti-inflammatory activity of several fucoidans (Laminaria saccharina, 782 

L. digitata, Fucus evanescens, F. serratus, F. distichus, F. spiralis, Ascophyllum 783 

nodosum, Cladosiphon okamuranus and Padina gymnospora) has been described to 784 

occur through the inhibition of leucocyte recruitment in an inflammation model in rats 785 

[108]. Moreover, inhibition of the expression of inducible nitric oxide synthase (iNOS) 786 

has also been demonstrated for fucoidans, such as that from the Sigma-Aldrich 787 

Chemical Co. (from F. vesiculosus). Furthermore, commercial fucoidans (from Mekabu 788 

and Sigma-Aldrich Chemical Co) together with those isolated from A. nodosum, F. 789 

evanescens, C. okamuranus and from other several brown algae of Laminariales order 790 

were described to exhibit anticomplementary activities, rendering them potential as anti-791 

allergic agents [37, 110, 114]. 792 

Overall, fucoidans have a number of potential applications, mainly associated to 793 

their claimed health benefits. Although there are only a few studies focusing on 794 

fucoidans isolated from Iberian brown seaweeds (mainly Ascophyllum nodosum, see 795 

Table 3) the previously reported data obtained from macroalgae of the same species 796 

(with an origin outside Iberian Peninsula), genera or order might indicate promising 797 

perspectives for Iberian specimens. Studies with Iberian fucoidan-bearing macroalgae 798 

should be undertaken, in order to prove their potential for commercial exploitation (e.g. 799 

nutraceuticals, supplements or even incorporated into processed foods). Moreover, the 800 

claims for health benefits of seaweeds are probably the best way to stimulate their 801 

consumption as food in occidental countries, including the Iberian Peninsula. 802 

Candidates of edible brown macroalgae, occurring on the Iberian Peninsula comprise: 803 

Fucus vesiculosus, Undaria pinnatifida, Saccharina latissima, Laminaria sp. and 804 

Himanthalia elongata. Note that these such utilization would not only contribute to a 805 

healthier diet but also to positive development for the local economy.  806 

 807 

 808 

2.3. Laminarans 809 

Laminarans are the main storage polysaccharide of brown algae (e.g. Laminaria 810 

spp., Saccharina spp.) [26, 125]. Their content can represent up to 32-35% of dry 811 

weight, with variations occurring between growth seasons of the seaweed [26, 103]. 812 

Laminarans are small glucans, with a degree of polymerization varying between 20 to 813 

50 units. The structure of these polysaccharides includes β-(13)-linked glucose, 814 

containing randomly β-(16) intra-chain branching [126].  815 
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Laminarans can occur in soluble or insoluble forms, being the first totally soluble in 816 

cold water while the second can be solubilized with hot water [127]. The solubility is 817 

influenced by branching, with better solubility being observed for higher branched 818 

polymers [127]. Laminarans contain polymeric chains of two types, i.e, the G-chains 819 

which are built only of Glcp residues and the M-chains, with 1-O-substituted, D-820 

mannitol residue at the terminal reducing end (Fig. 6) [128]. Laminarans from different 821 

seaweeds may vary with regard to their structural features, such as the M:G ratio, degree 822 

of branching and molecular weight [103, 127].  823 

 824 

 825 

  826 
Fig. (6). Chemical structures of laminarans of two types of chains: mannitol (A) or (B) glucose is attached 827 
to the reducing end of the M-chains or G-chains, respectively. 828 

 829 

 830 

Laminarans are presently attracting commercial interest because of some of their 831 

(or their derivatives) potential biological activities. These include antioxidant, 832 

antitumor, antimicrobial, immune modulation, drug delivery and anticoagulant 833 

properties [26, 129, 130]. In particular, in vitro studies revealed the interaction of 834 

laminarins in tumor cell metabolism, which suggest active functions in metabolic 835 

pathways leading to apoptotic cell death of the tumor cells [130, 131]. Lee et al. [132] 836 

also reported that laminaran stimulated and strengthed the immune system through 837 

metabolic expression and pathway interactions. Moreover, as for other seaweed 838 

polysaccharides, laminarans are not digested by the human digestive system, i.e. it is a 839 

natural fiber [125] and hence improves the gastro-intestinal health by decreasing the 840 

production of putrefactive compounds, known to induce cancer. Furthermore, they 841 

stimulate the growth of favorable intestinal microbiota such as Bifidobacterium strains 842 

[125, 133-135]. Note that antioxidant fibers are not only important for human digestive 843 
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health, but also for animals, including livestock and fish. The fact that laminarans have 844 

antioxidant properties might even attract the meat industry to feed their animals with 845 

supplements containing laminarans since, besides the healthy improvement of the 846 

animals’ intestines, it acts on the conservation of the meat after the animal is 847 

slaughtered [133-135]. In this instance, application of the polysaccharides could be an 848 

alternative to other synthetic antioxidants and antibiotics with known toxicity in the 849 

meat industry.  850 

There are even feasible applications of laminarans in the agricultural field. These 851 

polysaccharides have been shown to provide protection against pathogens due to the 852 

stimulation of specific metabolic pathways of plants which result in the expression of 853 

specific compounds known to trigger the defense responses of plants to pathogens 854 

[103]. 855 

The main Iberian members of the Laminariales order include: Saccharina latissima, 856 

Laminaria hyperborea, L. ochroleuca and L. digitata; and the major member of the 857 

Tilopteridales order is Saccorhiza polyschides. The industrial application of these 858 

seaweeds locally are mostly focused on bioethanol and biogas production [136]. There 859 

are also applications for the cultivation of these brown seaweeds with salmon, where the 860 

macrolagae can enrich the waters of the aquaculture site with oxygen while also 861 

providing bioremediation services and reducing local pollution (eutrophication) from 862 

the salmon. This system has been called the integrated, multi-trophic aquaculture 863 

(IMTA) system. The seaweed biomass produced in this system can be sold as a direct 864 

food resource [137]. Moreover, harvested L. hyperborea is commonly used for 865 

supplementation of pig food [133, 138] and in cosmetics [61].   866 

 867 

3. PIGMENTS 868 

As previously mentioned, seaweeds are generally classified according to their 869 

pigment composition, which include chlorophylls, carotenoids and phycobilins. The 870 

majority of these compounds have been commercialized for many years for coloring 871 

purposes, but importantly, the interest in their commercial applications has significantly 872 

increased in recent decades as promising applications in human health are being 873 

established. In this context, fucoxanthin is probably the main macroalgal pigment under 874 

the spotlight of several industries.  875 

 876 

3.1. Fucoxanthin 877 
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Fucoxanthin is an orange-colored accessory pigment, belonging to the xanthophylls 878 

(carotenoids) and one of the most abundant, representing about 10% of their total 879 

natural production [139-143]. It is the major carotenoid of edible brown seaweeds, 880 

where it binds to several proteins, together with chlorophyll a in the thylakoid of 881 

chloroplasts. Fucoxanthin was first isolated from the marine brown seaweeds: Fucus, 882 

Dictyota, and Laminaria by Willstätter and Page in 1914 [144] and its complete 883 

structure was elucidated by Englert et al. [145]. From the structural point of view, this 884 

compound is unique, with an unusual allenic bond and some oxygenic functional groups 885 

such as epoxide, hydroxyl, carbonyl and carboxyl moieties (Fig.7)  [146]. 886 

 887 

 888 

Fig. (7). Chemical structure of fucoxanthin [147] 889 

 890 

Due to the presence of double bonds in the polyene chain of the carotenoid, 891 

fucoxanthin might exist in trans and/or cis configurations. As for carotenes in general, 892 

the trans forms of fucoxanthin are thermodynamically more stable than the cis 893 

counterparts due to reduced steric hindrance [148]. Accordingly, all-trans fucoxanthin 894 

has been isolated from several seaweed sources and in particular, it has been shown to 895 

account for 88% of the total fucoxanthin in fresh U. pinnatifida [26]. 896 

Fucoxanthin is extremely vulnerable to degradation which mainly occurs by 897 

oxidative cleavage and/or epoxidation of the backbone. Degradation might be triggered 898 

by diverse external agents such as high temperature, high pressure, light and the 899 

presence of acid or oxygen. In this sense,  storage and processing conditions can 900 

compromise the stability of fucoxanthin resulting in oxidative degradation and 901 

isomerization [26]. Indeed, the levels of fucoxanthin were reported to significantly 902 

decrease after drying [149]. Moreover, light and pH decreases were reported to degrade 903 

the pigment, possibly related to trans-cis isomerization reactions [150]. These 904 

modifications currently limit the use of pure fucoxanthin as an ingredient of functional 905 

http://en.wikipedia.org/wiki/Chloroplast
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food preparations [151]. It is noteworthy that the stability of fucoxanthin might be 906 

improved in the presence of other organic ingredients such as polyphenols [151].  907 

The content of fucoxanthin in seaweeds greatly differs between species, with 908 

reported contents between 0.022 and 3.7 mg g
-1

 of dry weight [26, 152-154]. Also, the 909 

fucoxanthin content can be highly variable during the season and life cycle of the 910 

macroalga. In general, the levels of fucoxanthin increase from winter to spring (mature 911 

phase of the sporophyte) and decrease during summer (during the senescence phase) 912 

[154, 155]. 913 

Several in vitro and in vivo experiments suggested that fucoxanthin exerts 914 

important health-promoting activities, mainly due to its antioxidant properties [156]. 915 

The pigment has been shown to possess a strong ability to scavenge or quench DPPH• 916 

radicals, nitrobenzene with linoleic acids radical adduct (NB-L) and 12-doxyl-steric 917 

acid (12-DS). It is generally accepted that its antioxidant capacities are closely 918 

associated to the presence of the unique double allenic carbon in its structure that 919 

combined with two hydroxyl groups, confer additional stability and resonance 920 

stabilization [157].  921 

Besides being a good antioxidant, bioactivities reported for fucoxanthin also 922 

include anti-obesity, antidiabetic, anti-inflammatory, antimalarial, anti-aging, 923 

antitumural and protective effects on liver, brain, bones, skin and eyes [26, 30, 151, 157, 924 

158]. As a result of its claimed health-associated properties, the pigment is being 925 

evaluated for further use as a food supplement, as a therapeutic agent in the treatment of 926 

obesity, metabolic syndrome, diabetes and wrinkle formation [30]. 927 

Fucoxanthin, as other algal carotenoids, is commonly extracted with hexane and 928 

other non-polar solvents, by liquid solvent extraction. The solvent disrupts the cell 929 

membranes and dissolves lipids, lipoproteins and the membranes of chloroplasts [159, 930 

160]. Special care must be taken in the extraction procedure (e.g. low temperature and 931 

being kept in the dark) due to the high instability of fucoxanthin. Alternative methods 932 

such as the enzyme-assisted and microwave-assisted extractions and pressurized liquid 933 

extraction techniques have been used in an attempt to minimize the degradation of the 934 

fucoxanthin [140, 156, 161, 162]. 935 

As reported [139-143, 147], the species Undaria pinnatifida, Fucus vesiculosus, 936 

Sargassum siliquastrum, S. fulvellum, S. fusiforme, Himanthalia elongata, Eisenia 937 

bicyclis, Laminaria digitata, Saccharina japonica and Ascophyllum nodosum can be 938 

candidates for fucoxanthin extraction. From the reported species, the ones present in 939 
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Iberia Peninsula are the A. nodosum, H. elongata, F. vesiculosus, L. digitata and U. 940 

pinnatifida [71]. 941 

 942 

3.2 Phycobiliproteins  943 

Red algae are rich in phycobiliproteins, i.e., water soluble pigments found in the 944 

cytoplasm or in the stroma of the chloroplasts, which are formed by complexes of 945 

phycobilins with covalently bound proteins. Chemically, phycobilins are open-chain 946 

tetrapyrrole chromophores bearing A, B, C and D rings. These chromophores link to the 947 

polypeptide chain at conserved positions either by one cysteinyl thioester linkage 948 

through the vinyl substituent on the pyrrole ring A or occasionally, by two cysteinyl 949 

thioester linkages through the vinyl substituent on both A and D pyrrole rings [163]. 950 

The phycobilins are the main component determining the color of phycobiliproteins. 951 

Based on their absorption properties they can be blue (phycocyanobilin), red 952 

(phycoerythrobilin), yellow (phycourobilin) or purple (phycobiliviolin). Molecular 953 

pigments are organized in supra-molecular complexes (i.e. phycobilisomes) and they 954 

exert a fundamental role in the photosynthetic process of the red algae. 955 

R-phycoerythrin (Fig. 8) is the most common phycobiliprotein in many red algae, 956 

with levels, on a dry weight basis, of approximately 0.2% for Polysiphonia stricta and 957 

Pyropia (Porphyra) yezoensis, 12% for Palmaria palmata and Gracilaria gracilis and 958 

of 0.5% for G. tikvahiae [164-168].  959 

 960 

 961 
 962 

Fig. (8). Chemical structure of R-phycoerythrin [169] 963 

 964 

 965 

R-phycoerythrin, together with other phycobiliproteins, have been used for decades 966 

as natural colorants in foods (e.g chewing gum, ice creams, soft drinks, fermented milk 967 
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products, milk shakes, desserts, jellies and coated sweet cakes [170, 171]), cosmetic and 968 

pharmaceutical products. In general, the colors are very stable and tolerate high 969 

temperatures, pH changes and light [171]. Moreover, R-phycoerythrin has specialized 970 

applications in analytical techniques such as flow cytometry, cell sorting and 971 

histochemistry [30]. C-phycocyanin, R- and B-phycoerythrin are currently used in the 972 

cosmetic industry for production of lipsticks, eyeliners and other high value cosmetics 973 

[168].  974 

Biological properties of phycoerythrin and/or phycobiliproteins include antioxidant, 975 

anti-inflammatory, neuroprotective, immunomodulator, antiviral, antitumor, 976 

cardiovascular and liver protection [168, 171-173]. Due to their biological properties, 977 

many patents have been established, towards applications of these pigments for 978 

nutritional supplements and therapeutic agents [170].  979 

Typically, extraction of phycobiliproteins comprises the disruption of cells and a 980 

primary isolation from the algae by chemical and physical techniques. The extraction 981 

yield can be improved by the addition of other processes such as freezing, sonication 982 

and homogenization, or the use of enzymes  (e.g. lyzozymes) [168]. Phycobiliproteins 983 

are then purified, usually by chromatographic methods [170], or by the use of novel 984 

techniques such as immuno-absorption and genetic recombination. 985 

From the reported data, Corallina elongata, Gracilaria gracilis, Grateloupia 986 

turuturu and Palmaria palmata are present on the Iberian Peninsula and hence, can be 987 

considered potential candidates for the extraction and applications of phycobiliproteins 988 

[4]. 989 

 990 

4. PROTEINS 991 

Besides the commercial applications of phycobiliproteins, macroalgae have other 992 

proteic compounds which have a promising potential for exploitation. Indeed, 993 

macroalgae (in particular certain of the green and reds) have relatively high protein 994 

contents, ranging from 9-26% (w⁄w) dry weight (green) or reaching up to 47% (w⁄w) 995 

dry weight (red) [174]. Some of these contents are even higher than those found in high-996 

protein conventional foods, e.g. eggs, beans or fish  [174, 175]. According to the 997 

literature, the levels of seaweed proteins are determined by seasonality, with the highest 998 

contents in general being observed for the winter period [174, 176].  999 

Additionally, the majority of seaweeds contain all the essential amino acids. In 1000 

particular, isoleucine and threonine can be found at similar levels (e.g. in Palmaria 1001 
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palmata) to those found in legumes, while histidine levels (e.g. in Ulva pertusa) can be 1002 

as high as those found in egg proteins [174]. Some seaweeds (mainly browns) may also 1003 

have high levels of acidic amino acids, i.e. aspartic acid and glutamic acid [174]. The 1004 

latter have much interest in flavor development processes and in particular, glutamic 1005 

acid (mainly responsible for the taste sensation of ‘umami’) is presently being used as a 1006 

food additive in the form of its sodium salt (E-621) [177]. The combined glutamic acid 1007 

and aspartic acid levels account for 22-44% wet weight of the total amino acid fraction 1008 

in Fucus sp. and 39-41% in Sargassum spp., whilst both amino acids together represent 1009 

18% of the total amino acid content in L. digitata proteins [26]. 1010 

Likewise, certain macroalgae produce several useful enzymes, from which 1011 

haloperoxidases are probably of major relevance. Haloperoxidases are rare enzymes that 1012 

catalyse the oxidation of a halide (i.e., chloride, bromide, or iodide) by hydrogen 1013 

peroxide, a process that results in the concomitant halogenation of organic substrates 1014 

[178]. These enzymes are crucial in the synthesis of compounds of biological 1015 

importance that are difficult to be synthesized by the conventional methods of organic 1016 

chemistry [178]. Haloperoxidases also have powerful applications in qualitative and 1017 

quantitative diagnostic assays (e.g. glucose, uric acid and cholesterol), as it generates 1018 

intense colored products with appropriate subtrates. 1019 

In addition, some macroalgal protein hydrolysates and their associated peptides 1020 

might exert important bioactive properties, providing them with commercial prospects 1021 

as functional foods. The main beneficial properties of protein of macroalgal  origin were 1022 

recently reviewed by Harnedy and FitzGeral [8]. These include ACE-inhibitory, 1023 

antihypertensive, antioxidant, antitumor, antityrosinase, anticoagulant, calcium-1024 

precipitation-inhibitory, antimutagenic, plasma- and hepatic-cholesterol reducing, 1025 

blood-sugar-lowering, and superoxide dismutase (SOD)-like activities. 1026 

The main seaweeds with high protein content from the Iberian Peninsula are: 1027 

Porphyra (Pyropia) umbilicalis (i.e. Atlantic nori), Palmaria palmata (Rhodophyta), 1028 

and Himanthalia elongata, Saccharina latissima, Undaria pinnatifida (Phaeophyceae), 1029 

and Ulva compressa (Chlorophyta) [5, 30]. "Atlantic nori" from the Iberian Peninsula 1030 

is, for now, a wild seaweed (as compared to Japanese equivalent species which have 1031 

been cultivated since the XV century). Note that nori is one of the most appreciated and 1032 

highly commercially valued algae, due to its high content in minerals and proteins, 1033 

together with intense flavor, aroma and smooth texture.  1034 

 1035 
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5. PHLOROTANNINS 1036 

Chemically, phenolic compounds are organic compounds characterized by an 1037 

aromatic ring with one or more hydroxyl groups that can occur in different chemical 1038 

structures [179-181] varying between simple phenolic molecules to complex high-1039 

molecular weight polymers (126-650 kDa) [182]. Phlorotannins consist of oligomers or 1040 

polymers of phloroglucinol (Fig. 9), which are known to be located in special vesicles 1041 

(i.e. physodes) of the cells [26, 110]. 1042 

Phlorotannins are only found in the brown algae and have been identified in distinct 1043 

families, including: the Alariaceae, Fucaceae and Sargassaceae. In particular, the 1044 

species Eisenia bicyclis, Ishige okamurae, Sargassum thunbergii, S. fusiforme, Undaria 1045 

pinnatifida and Saccharina japonica, as well as algae belonging to the genera 1046 

Cystophora and Ecklonia, are recognized as good sources of phlorotannins [183]. 1047 

Relevant phlorotannins encountered in Ecklonia cava [184], E. stolonifera [185], 1048 

Eisenia bicyclis and Fucus vesiculosus [186] are represented in Fig. 10 and comprise:  1049 

phloroglucinol, tetrafucol A, fucophlorethol A, fucodiphloroethol G, 1050 

phlorofucofuroeckol A, 7-phloroeckol, eckol, dieckol and triphlorethol-A.  1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 
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 1069 

Fig. (9). Chemical structure of phlorotannins (adapted from [185]) 1070 
 1071 

The levels of phlorotannins varies greatly between different taxonomic groups and 1072 

geographical areas. Variations also occur in the same species and depending on factors 1073 

such as plant size, age, tissue type and environmental factors such as nutrient, light, 1074 

salinity, water depth and season [187]. 1075 

The interest in phlorotannins has increased in the last decade due to their potential 1076 

biological activities, as described by several authors. In more detail, the compounds 1077 

eckol, doxinodehydroeckol and dieckol from E. bicyclis have been shown to have 1078 
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interesting deodorizing effects [168]. Moreover, phlorotannin compounds identified in 1079 

different Ecklonia species were reported to possess important antimicrobial activities 1080 

against several pathogens [188], as well as an antidiabetic effect in in vitro and in vivo 1081 

models [189], antioxidant [183], hypnotic [190], hepatoprotective [191], anti-1082 

inflammatory [192] and for lowering blood pressure [193] capacities. Overall, these 1083 

claimed effects for phlorotannins render these metabolites with many potential future 1084 

applications in several industries.   1085 

Traditionally, phlorotannins have been extracted using ethanol, methanol or 1086 

aqueous acetone as a solvent [139, 186], while additional purification is commonly 1087 

achieved by chromatographic techniques [194, 195]. Due to the low stability of 1088 

phlorotannins, the extracts are frequently obtained with nitrogen or by adding K2S2O5 or 1089 

ascorbic acid in order to prevent oxidation [196, 197].  1090 

 1091 

6. MINERALS 1092 

Marine algae are known to contain a wide variety and high levels of certain 1093 

minerals (this may vary form 8-40% of algal dry weight (DW) and have therefore been 1094 

employed as mineral additives to feed and food supplements [198]. Their high mineral 1095 

content is related to their capacity to retain inorganic marine substances [199] due to the 1096 

ionic and exchange capacity features of their cell surface polysaccharides  [200]. 1097 

 
Nevertheless, the mineral composition of macroalgae varies according to phylum 1098 

and even amongst species [201] as well as many other factors such as environmental 1099 

and physiological variations, geographic harvesting site, seasonality and wave exposure. 1100 

Moreover, it is also a result of seaweed’s oceanic residence time and type of processing 1101 

[202]. 1102 

The value of edible seaweeds in human nutrition is based, among others (e.g., 1103 

dietary fiber, vitamins, etc.), on their high content in several (essential) minerals, 1104 

namely: Na, Mg, P, K, I, Fe, and Zn [202]. Seaweeds also contain large amounts of 1105 

trace elements [198] that are scarce in vegetables and hence, algal-based supplements 1106 

can provide to humans the daily requirements of these minerals [203].  1107 

Seaweeds have higher mineral content than edible terrestrial plants and animals. 1108 

Indeed, mean ash (and thereby mineral) content of most traditional vegetables is 1109 

frequently much lower than that of seaweeds (e.g. 10.4% in potatoes, 2.6% in sweet 1110 

corn, 7.1% in carrots and in tomatoes) [202]. Only the higher values observed in 1111 
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spinach (20%) are comparable to those of seaweeds [202]. Rupérez [198] also showed 1112 

that ash content of many algae was elevated and higher in brown (i.e. 30.1-39.3%) 1113 

rather than in red (20.6-21.1%) seaweeds.  1114 

Most algae display higher Na and K values than those reported in vegetables. 1115 

However, their Na/K ratios are usually low [204]. Additionally, most edible algae have 1116 

higher levels of Mg (500-1,000 mg.100g
-1

 DW) than terrestrial plants and animals [ 1117 

205]. Ca is one of the major elements in algae and is present at concentrations of about 1118 

400-2000 mg.100g
-1

 DW (table V). The Ca and P contents of certain seaweeds are 1119 

higher than those of apples, oranges, carrots, and potatoes. High Ca/P ratio in algae 1120 

(3:5) could compensate the deficit of Ca in several foods, such as cereals and meats 1121 

[201]. Iodine (I) can reach high levels in certain brown algae [206], whereas green algae 1122 

present low or nonexistent values (Table 5). Members of the genus Laminaria are the 1123 

strongest iodine accumulators among all living systems (the accumulation can be up to 1124 

30,000 times greater than the surrounding sea water, and brown algal tissue can 1125 

represent a major source of this element [207]. The uptake of dietary iodide by the 1126 

human and animal thyroid leading to thyroid hormone formation, is a well-established 1127 

phenomenon. L. digitata is widely used as a health supplement for myxoedema and for 1128 

the treatment of goiter [208]. It has been reported that U. pinnatifida (or its equivalent 1129 

iodine content) inhibited tumorogenesis in rats with carcinogen-induced mammary 1130 

tumors, although the mode of action is not understood [209]. 1131 

 1132 

 1133 

Table 5. Mineral composition of some Iberian Peninsula, edible seaweeds 1134 

(g.100 g
−1

 DW
a
 or mg. 100 g

−1
 DW

b
). Adapted from [5]. 1135 

Species Naa Ka Pa Caa Mga Feb Znb Mnb Cub Ib 

Green seaweed 
          

Caulerpa racemosa 2.6 0.32 29.7 1.9 0.38 – 1.6 30 – 81 
1 – 

7 
4.91 

0.6 – 

0.8 
- 

Ulva lactuca  - 0.14 0.84 - 66 - - - - 

U. rigida 1.6 1.6 0.21 0.52 2.1 283 0.6 1.6 0.5 - 

           

Brown seaweed           

Fucus vesiculosus 
2.5 – 

5.5 

2.5 – 

4.3 
0.32 

0.72 – 

0.94 
0.67 – 1.0 4 – 11 3.71 5.50 <0.5 14.5 

Himanthalia elongata 4.1 8.3 0.24 0.72 0.44 59 - - - 14.7 

Laminaria digitata 3.8 11.6 - 1.0 0.66 3.29 1.77 <0.5 <0.5 - 

Undaria pinnatifida 
1.6 – 

7.0 

5.5 – 

6.8 

0.24 – 

0.45 
0.68 – 1.4 

0.41 – 

0.69 

1.54 – 

30 
0.94 0.33 0.19 22 – 30 

           

Red seaweed           

http://en.wikipedia.org/wiki/Ulva_lactuca
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Chondrus crispus 
1.2 – 

4.3 

1.4 – 

3.2 
0.14 0.42 – 1.1 600 – 732 4 – 17 7.14 1.32 <0.5 24.5 

Gracilaria spp. 5.5 3.4 - 0.40 565 3.65 4.35 - - - 

Palmaria palmata 
1.6 – 

2.5 

7.0 – 

9.0 
0.24 0.56 – 1.2 170 – 610 50 2.86 1.14 0.376 

10 – 

100 

Porphyra umbilicalis 0.94 2.0 0.24 0.33 370 23 - - - 17.3 

Na – sodium; K – potassium; P – phosphorus; Ca – calcium; Mg – magnesium; Fe – iron; Zn – zinc; Mn – manganese; Cu – copper; I – iodine. 1136 

 1137 

One negative aspect of seaweed consumption could involve the potential health 1138 

risks associated with high algal concentrations of heavy metals (i.e. As, Cd, Cu, Hg, Pb, 1139 

and Zn) [210], as algal fibers may act as a  powerful cation exchanger [211]. Organic 1140 

values reported for brown algae are especially high (i.e. 200 – 500 times greater than the 1141 

levels found in terrestrial plants). Nevertheless, metal values in macroalgae are 1142 

generally below the maximum concentrations permitted for human consumption in most 1143 

countries [205]. Moreover, it has been shown that organic As is less toxic than the 1144 

inorganic form [212]. In contrast, marine fish may contain high concentrations of Hg, 1145 

but this element is found in low, even trace, amounts in algae [213]. 1146 

 1147 

 1148 

7. CONCLUSION 1149 

Presently, seaweeds are used in many countries for a multituide of very different 1150 

purposes. The majority of seaweeds are still used for direct human consumption, while a 1151 

minor portion is for industrial exploitation of seaweed-derived products. Nevertheless, 1152 

recent investigations point to seaweed-derived products (e.g. polysaccharides, proteins, 1153 

lipids and polyphenols) as novel bioactive products and/or biomaterials/biopolymers 1154 

which have great potential in many areas, opening a framework for future research and 1155 

development.  1156 

The Iberian Peninsula is located in the warm temperate Mediterranean-Atlantic 1157 

region and is under unique influences receiving climatic effects from the North Atlantic 1158 

Ocean and the Mediterranean Sea. This coast is a home to a great diversity of seaweeds, 1159 

albeit only a few of these species are currently being exploited. The present manuscript 1160 

is intended to raise and alert to the potential applications of seaweed-derived products, 1161 

as well as to the seaweeds diversity in Iberian Peninsula, hoping to contribute to boost 1162 

their industrial utilization. 1163 
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