40 research outputs found

    Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa

    Get PDF
    Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.18531018102

    RAPD marker use for improving resistance to Helicoverpa zea in corn

    No full text
    Helicoverpa zea is responsible for great losses to the corn, Zen mays L., crops final productivity, and the best way to control it is by improving genetic resistance. In collaboration with corn improvement and increasing resistance to insects through molecular marker assisted selection, this work had as an objective the selection of resistant (RP) and susceptible progenies (SP) to H. zea based on the RAPD technique. Molecular markers were Found, among the resistant progenies and it is suggested that linkage of these within the Zapalote Chico corn race, be used to extract resistance genes from this race as a donor. The progenies were selected from a population of half-sibs exhibiting a broader genetic base (FCAVJ-VF14). After DNA extraction, two sample bulks were formed; one made up of the six most resistant plants, the other of the six least resistant plants. Eighty-six primers were tested for PCR reactions with the resistant and susceptible bulks and analyzed on agarose electrophoresis for the detection of RAPD band polymorphism. The results of the banding patterns and similarity values indicated a nucleotide sequence amplified by the primer OPC-2 as a possible molecular marker for the identification of resistant progenies and a homology region between them and the Zapalote Chico corn race
    corecore