4 research outputs found

    Isolation, Expansion, Differentiation and Growth Kinetics Essay in Mesenchymal Stem Cells Culture from the Bone Marrow of Collared Peccaries (Tayassu tajacu)

    Get PDF
    Background: There are few studies on stem cell isolation in wild animals that provide isolation and culture protocols of these cells in vitro. Among the wild species studied, we present the collared peccary (Tayassu tajacu) as a model with potential to obtain and use MSC in preclinical studies. These animals are phylogenetically close to the domestic pig, popularly known as peccaries and found naturally in South America, Central America and the South of the United States. The aim of the present study was to establish a protocol for the isolation, in vitro cell expansion, differentiation and assessment of the stromal MSC growth curve before and after thawing.Materials, Methods & Results: Mesenchymal stem cells (MSC) from collared peccary bone marrow (Tayassu tajacu) were isolated and expanded by centrifuge in Ficoll® solution and cultured in DMEM® High Glucose medium. The culture was assessed by assays of colony forming units CFU-F and growth curve by saturation (GCS). Cultures in the third passage, with 70% confluence, were replicated at 105 cells/mL concentration in the culture media to induce osteogenic cell differentiation and adipogenic cell differentiation, respectively. The MSC were frozen in nitrogen for 40 days, thawed and re-assessed for cell viability and GCS.Discussion: The bone marrow collected presented high mononuclear cellularity, with a mean variability of 94.5% and 60.83 ± 4.27 UFC were identified in the samples and cells with fibroblast-like-cell morphology were observed. When they were expanded, the mean cell viability was 95%, the mean cell concentration obtained was 233.31 ± 20.04 cells per 25cm2 bottle and the culture reached the growth plateau in GCS between the 13th and 16th day. The osteoblastic cell differentiation assay showed after 18 days, morphology similar to osteoblasts, with irregular cytoplasm limits, cell prolongation formation and flattened appearance. After staining with Alizarin Red, the nucleus presented a wine red coloring and the cytoplasm, more basophilic and well-defined, with calcium deposits inside the cells. The cultures submitted to adipogenic differentiation were large, hexagonal, irregular and presented birrefringent cytoplasm granules after the third week of culture. When stained with Oil Red it was observed that the cytoplasm granules were scattered small fat vacuoles and stained maroon. The viability after thawing was 78% and the mean cell concentration obtained in GCS was 199.71 ± 14.72 cells per 25 cm2 bottle. The curves reached the saturation plateau early, on the eighth day of observation. From then onwards the cultures entered became exhausted and the cell concentration of the samples decreased progressively until minimum values. These results showed the presence of a well-defined MSC population in the collared peccary bone marrow with a high rate of replication in vitro and potential for differentiation confirmed by the adipogenic and osteogenic lines. The cryopreservation technique adopted presented satisfactory results, but indicated a significant cell stress after thawing that justifies investigation of the apoptosis rates induced post thawing in the species. Furthermore, the bone marrow collection did not harm the animals and the facility of stromal MSC isolation and culture qualifies the collared peccary as a viable alternative model to obtain MSC and for studies in the area of cell therapy

    Xenogeneic Mesenchymal Stem Cells in the Formation of Hyaline Cartilage in Osteochondral Goat Failure

    Get PDF
    Background: Osteochondral knee failures are among the most common causes of disability among the elderly human population and animal athletes. The xenogeneic transplantation of mesenchymal stem cells is a questionable therapeutic alternative that, despite the low expression of Major Histocompatibility Complex type II by these cells, still has relevantuncertainties about the safety and clinical efficacy. The main objective of the present study was to investigate whether the xenogeneic transplantation of mesenchymal stem cells induces hyaline cartilage formation, without histopathological evidence of rejection, in osteochondralfailures of goats.Materials, Methods & Results: Five female goats were used, submitted to three surgical osteocondral failures in the right knee, treated with xenogenic mesenchymal stem cells of dental pulp, xenogenic platelet-rich plasma and hemostatic sponge of hydrolyzed collagen, respectively. The lesions were evaluated after 60 days of treatment, aiming to identify thepresence of hyaline cartilage or fibrocartilage and the subchondral bone pattern (regenerated or disorganized). Transplantation of xenogenic mesenchymal stem cells induced predominant formation of hyaline cartilage (P 0.05). Macroscopically, the lesions of the stem cell treated group showed formation of firm repair tissue, opaque staining, integrated with adjacent cartilage and with the failure filling almost completely. The groups treated with PRP and hemostatic sponge of hydrolyzed collagen presented, on average, partial filling of the lesion, with irregular shape and darkened coloration.Discussion. The absence of macroscopic and histopathological evidences of an inflammatory process on the surface and in the internal portion of the osteochondral lesions treated with xenogeneic stem cells, probably due to the low expression of Major Histocompatibility Complex type II by these cells, which would theoretically induce low rejection response. Such observations are of great importance, since graft-versus- host disease syndrome is a serious condition, responsible for the low therapeutic efficacy with transplantation of cells or grafts in humans. The formation of fibrocartilage, although without macro and microscopic evidence of degeneration or necrosis, in the osteochondral failures treated with PRP and hemostatic collagen sponge suggest that paracrine factors of the local microenvironment of the osteochondral failure are possibly responsible for the formation of fibrocartilaginous tissue or by inhibition of normal cartilage formation. The fibrocartilage formed in the Plasmaand Control groups, contributed to the commitment in the filling of the lesion, contrasting with the almost complete fill of the lesions treated with stem cells. The xenotransplantation of mesenchymal stem cells induced formation of hyaline cartilage and did not promote histopathological evidence of rejection in osteochondral lesions of goat knees. The treatments with PRP and hemostatic sponge of hydrolyzed collagen induced greater formation of fibrocartilaginous cartilaginous surface in the osteochondral failures

    Isolation, Expansion, Differentiation and Growth Kinetics Essay in Mesenchymal Stem Cells Culture from the Bone Marrow of Collared Peccaries (Tayassu tajacu)

    Get PDF
    Background: There are few studies on stem cell isolation in wild animals that provide isolation and culture protocols of these cells in vitro. Among the wild species studied, we present the collared peccary (Tayassu tajacu) as a model with potential to obtain and use MSC in preclinical studies. These animals are phylogenetically close to the domestic pig, popularly known as peccaries and found naturally in South America, Central America and the South of the United States. The aim of the present study was to establish a protocol for the isolation, in vitro cell expansion, differentiation and assessment of the stromal MSC growth curve before and after thawing.Materials, Methods & Results: Mesenchymal stem cells (MSC) from collared peccary bone marrow (Tayassu tajacu) were isolated and expanded by centrifuge in Ficoll® solution and cultured in DMEM® High Glucose medium. The culture was assessed by assays of colony forming units CFU-F and growth curve by saturation (GCS). Cultures in the third passage, with 70% confluence, were replicated at 105 cells/mL concentration in the culture media to induce osteogenic cell differentiation and adipogenic cell differentiation, respectively. The MSC were frozen in nitrogen for 40 days, thawed and re-assessed for cell viability and GCS.Discussion: The bone marrow collected presented high mononuclear cellularity, with a mean variability of 94.5% and 60.83 ± 4.27 UFC were identified in the samples and cells with fibroblast-like-cell morphology were observed. When they were expanded, the mean cell viability was 95%, the mean cell concentration obtained was 233.31 ± 20.04 cells per 25cm2 bottle and the culture reached the growth plateau in GCS between the 13th and 16th day. The osteoblastic cell differentiation assay showed after 18 days, morphology similar to osteoblasts, with irregular cytoplasm limits, cell prolongation formation and flattened appearance. After staining with Alizarin Red, the nucleus presented a wine red coloring and the cytoplasm, more basophilic and well-defined, with calcium deposits inside the cells. The cultures submitted to adipogenic differentiation were large, hexagonal, irregular and presented birrefringent cytoplasm granules after the third week of culture. When stained with Oil Red it was observed that the cytoplasm granules were scattered small fat vacuoles and stained maroon. The viability after thawing was 78% and the mean cell concentration obtained in GCS was 199.71 ± 14.72 cells per 25 cm2 bottle. The curves reached the saturation plateau early, on the eighth day of observation. From then onwards the cultures entered became exhausted and the cell concentration of the samples decreased progressively until minimum values. These results showed the presence of a well-defined MSC population in the collared peccary bone marrow with a high rate of replication in vitro and potential for differentiation confirmed by the adipogenic and osteogenic lines. The cryopreservation technique adopted presented satisfactory results, but indicated a significant cell stress after thawing that justifies investigation of the apoptosis rates induced post thawing in the species. Furthermore, the bone marrow collection did not harm the animals and the facility of stromal MSC isolation and culture qualifies the collared peccary as a viable alternative model to obtain MSC and for studies in the area of cell therapy

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore