6,263 research outputs found

    Statistical Mesoscopic Hydro-Thermodynamics: The Description of Kinetics and Hydrodynamics of Nonequilibrium Processes in Single Liquids

    Full text link
    Hydrodynamics, a term apparently introduced by Daniel Bernoulli (1700-1783) to comprise hydrostatic and hydraulics, has a long history with several theoretical approaches. Here, after a descriptive introduction, we present so-called mesoscopic hydro-thermodynamics, which is also referred to as higher-order generalized hydrodynamics, built within the framework of a mechanical-statistical formalism. It consists of a description of the material and heat motion of fluids in terms of the corresponding densities and their associated fluxes of all orders. In this way, movements are characterized in terms of intermediate to short wavelengths and intermediate to high frequencies. The fluxes have associated Maxwell-like times, which play an important role in determining the appropriate contraction of the description (of the enormous set of fluxes of all orders) necessary to address the characterization of the motion in each experimental setup. This study is an extension of a preliminary article: Physical Review E \textbf{91}, 063011 (2015)

    The role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene

    Full text link
    We address the role of excitonic coulping on the nature of photoexcitations in the conjugated polymer regioregular poly(3-hexylthiophene). By means of temperature-dependent absorption and photoluminescence spectroscopy, we show that optical emission is overwhelmingly dominated by weakly coupled H-aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks provides a powerfully simple means to extract the magnitude of the intermolecular coupling energy, approximately 5 and 30 meV for films spun from isodurene and chloroform solutions respectively.Comment: 10 pages, 4 figures, published in Phys. Rev. Let

    Spectral multi-normalisation for robust speech recognition

    Get PDF
    This paper presents an improved version of a spectral normalisation based method for extraction of speech robust features in additive noise. The baseline normalisation method was developed by taking into consideration that, while the speech regions with less energy need more robustness, since in these regions the noise is more dominant, the “peaked” spectral regions which are the most reliable due to the higher speech energy must also be preserved as much as possible by the feature extraction process. The additive noise effect tends to flatten the “peaked” spectral zones while the spectral zones of less energy are usually raised. The algorithm proposed in this paper showed to alleviate the noise effect by emphasising the voiced nature of the speech signal by raising the spectral “peaks”, which are “flatten” by the noise effect. The clean speech database is assumed as lightly contaminated, the additive noise is estimated in a frame by frame basis and then used to restore both the “peaked” and the flat spectral zones of the speech spectrum

    Higher-order Generalized Hydrodynamics: Foundations Within A Nonequilibrium Statistical Ensemble Formalism.

    Get PDF
    Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena involving motion of fluids displaying variations short in space and fast in time-unrestricted values of Knudsen numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing the contraction of description.9106301

    Understanding Drought Dynamics during Dry Season in Eastern Northeast Brazil

    Get PDF
    Eastern Northeast Brazil (ENEB) generally experiences a high variability in precipitation in the dry season, with amplitudes that can overcome 500mm. The understanding of this variability can help in mitigating the socio-economic issues related to the planning and management of water resources this region, which is highly vulnerable to drought. This work aims to assess spatio-temporal variability of precipitation during the dry season and investigate the relationships between climate phenomena and drought events in the ENEB, using univariate (Spearman correlation) and multivariate statistical techniques, such as Principal Component Analysis, Cluster Analysis, and Maximum Covariance Analysis. The results indicate that the variability of precipitation in the dry season can be explained mainly (62%) by local physical conditions and climate conditions have a secondary contribution. Further analysis of the larger anomalous events suggests that the state of Atlantic and Pacific oceans can govern the occurrence of those events, and the conditions of Atlantic Ocean can be considered a potential modulator of anomalous phenomena of precipitation in ENEB

    Novel approach to plasma facing materials in nuclear fusion reactors

    Get PDF
    A novel material design in nuclear fusion reactors is proposed based on W-nDiamond nanostructured composites. Generally, a microstructure refined to the nanometer scale improves the mechanical strength due to modification of plasticity mechanisms. Moreover, highly specific grainboundary area raises the number of sites for annihilation of radiation induced defects. However, the low thermal stability of fine-grained and nanostructured materials demands the presence of particles at the grain boundaries that can delay coarsening by a pinning effect. As a result, the concept of a composite is promising in the field of nanostructured materials. The hardness of diamond renders nanodiamond dispersions excellent reinforcing and stabilization candidates and, in addition, diamond has extremely high thermal conductivity. Consequently, W-nDiamond nanocomposites are promising candidates for thermally stable first-wall materials. The proposed design involves the production of WAV-nDiamondAV-Cu/Cu layered castellations. The W, W-nDiamond and W-Cu layers are produced by mechanical alloying followed by a consolidation route that combines hot rolling with spark plasma sintering (SPS). Layer welding is achieved by spark plasma sintering. The present work describes the mechanical alloying processsing and consolidation route used to produce W-nDiamond composites, as well as microstructural features and mechanical properties of the material produced Long term plasma exposure experiments are planned at ISTTOK and at FTU (Frascati)

    Shot noise and spin-orbit coherent control of entangled and spin polarized electrons

    Get PDF
    We extend our previous work on shot noise for entangled and spin polarized electrons in a beam-splitter geometry with spin-orbit (\textit{s-o}) interaction in one of the incoming leads (lead 1). Besides accounting for both the Dresselhaus and the Rashba spin-orbit terms, we present general formulas for the shot noise of singlet and triplets states derived within the scattering approach. We determine the full scattering matrix of the system for the case of leads with \textit{two} orbital channels coupled via weak \textit{s-o} interactions inducing channel anticrossings. We show that this interband coupling coherently transfers electrons between the channels and gives rise to an additional modulation angle -- dependent on both the Rashba and Dresselhaus interaction strengths -- which allows for further independent coherent control of the electrons traversing the incoming leads. We derive explicit shot noise formulas for a variety of correlated pairs (e.g., Bell states) and lead spin polarizations. Interestingly, the singlet and \textit{each} of the triplets defined along the quantization axis perpendicular to lead 1 (with the local \textit{s-o} interaction) and in the plane of the beam splitter display distinctive shot noise for injection energies near the channel anticrossings; hence, one can tell apart all the triplets, in addition to the singlet, through noise measurements. We also find that spin-orbit induced backscattering within lead 1 reduces the visibility of the noise oscillations, due to the additional partition noise in this lead. Finally, we consider injection of two-particle wavepackets into leads with multiple discrete states and find that two-particle entanglement can still be observed via noise bunching and antibunching.Comment: 30 two-column pages and 7 figure
    • …
    corecore