23 research outputs found

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Biosorption of zinc ion: a deep comprehension

    Get PDF

    Analyzing accelerometer data for epilepsy episode recognition

    No full text
    International Conference on Soft Computing Models in Industrial and Environmental Applications (10th. 2015. Burgos

    Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers

    Get PDF
    Abstract The photodegradation of the herbicides atrazine and ametryn with visible light in aerated neutral aqueous solutions and 5, 10, 15, 20-tetrakis (2,6-dichloro-3-sulfophenyl) porphyrin or 5, 10, 15, 20-tetrakis (4-sulfophenyl) porphyrin as sensitizers are reported for the first time. Our findings show that the degradation percentage reached 30% for atrazine and 63% for ametryn. The final photoproducts were characterized as dealkylated s-triazines. Photolysis of the pesticides in the presence of a singlet oxygen quencher showed only a minor contribution of this type of mechanism, while a bimolecular quenching reaction between the triplet state of the sensitizer and the pesticides is excluded by flash photolysis studies. It is proposed that the mechanism may involve the formation of a superoxide radical anion from the triplet state of the sensitizer and molecular oxygen, followed by a radical decomposition pathway
    corecore