16 research outputs found

    Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency

    Get PDF
    Both photosynthesis (A) and stomatal conductance (g s ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and g s in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and g s to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and g s in most of the species. The shape of the guard cells influenced the rapidity of response and the overall g s values achieved, with different impacts on A and W i . The rapidity of g s in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use

    Modelling daily variations of stomatal conductance : contributions of a dynamic approach and impact on the intrinsic water use efficiency in oak

    No full text
    L'efficience intrinsèque d'utilisation de l'eau (Wi) définit comme le rapport de l'assimilation nette de CO2 (A) sur la conductance stomatique à la vapeur d'eau (gs) est un estimateur au niveau foliaire du compromis fait par la plante entre l'accumulation de biomasse et sa consommation en eau. De nombreuses études ont révélé une forte diversité inter et intra-spécifique de ce trait intégré dans le temps dont l'origine est encore mal connue. Les travaux réalisés sur les variations journalières de A et gs ont jusqu'à maintenant révélé un rôle plus important de la diversité de gs dans la diversité de Wi. Une approche de modélisation inversée a permis de décomposer les variations de gs, observées lors de cinétiques journalières, sous la forme de paramètres décrivant les réponses stomatiques aux différentes variables microclimatiques. Comparé aux modèles décrivant les variations de gs en régime permanent, le développement d'un nouveau modèle dynamique a permis d'ajouter une dimension temporelle essentielle décrivant la réponse temporelle des stomates aux variations microclimatiques. La diversité des réponses temporelles des stomates détectée ne semble pas dépendre de leur densité ou de leur taille. Elle présente toutefois une asymétrie entre l'ouverture et la fermeture des stomates qui participe à la diversité des variations journalières de gs et impacte le bilan hydrique journalier au niveau du plant entier. Ainsi, on peut distinguer deux composantes aux variations journalières de Wi liées à gs : une composante temporelle due à la lente réponse des stomates et une autre composante due aux différences de perception des variations du microclimatIntrinsic water use efficiency (Wi), defined as the ratio between net CO2 assimilation rate (A) and stomatal conductance to water vapour (gs), is a leaf level estimator of the trade-off between biomass accumulation and water loss at the plant level. A number of studies have shown a strong inter and intra-specific diversity, usually using a time integrated estimator of this trait. However, the origin of this diversity is not yet well known. Up to now, research on the daily variations of Wi have shown a stronger influence of gs on the diversity of Wi as compared to A. An inverse modelling approach has allowed partitioning the variations of gs observed during daily time-courses into parameters, which describe the stomatal responses to different microclimatic variables. Compared to steady-state gs models, the development of a new dynamic model of gs has allowed adding a necessary temporal dimension, which describes the temporal response of stomata to environmental variations. The observed diversity of these temporal stomatal responses was not related to stomatal density or size. The temporal responses of stomata were shown to be asymmetric between opening and closing, which impacts the observed diversity of gs during daily time courses as well as whole plant water relations. Overall these results suggest two components that determine the variations of Wi related to gs during daily time courses: one component due to the temporal response of stomata in itself, and one component which is due to differences in the sensing of microclimate variation

    Modélisation des variations journalières de la conductance stomatique : apport d'une approche dynamique et conséquences sur l'efficience intrinsèque d'utilisation de l'eau chez le chêne

    No full text
    Intrinsic water use efficiency (Wi), defined as the ratio between net CO2 assimilation rate (A) and stomatal conductance to water vapour (gs), is a leaf level estimator of the trade-off between biomass accumulation and water loss at the plant level. A number of studies have shown a strong inter and intra-specific diversity, usually using a time integrated estimator of this trait. However, the origin of this diversity is not yet well known. Up to now, research on the daily variations of Wi have shown a stronger influence of gs on the diversity of Wi as compared to A. An inverse modelling approach has allowed partitioning the variations of gs observed during daily time-courses into parameters, which describe the stomatal responses to different microclimatic variables. Compared to steady-state gs models, the development of a new dynamic model of gs has allowed adding a necessary temporal dimension, which describes the temporal response of stomata to environmental variations. The observed diversity of these temporal stomatal responses was not related to stomatal density or size. The temporal responses of stomata were shown to be asymmetric between opening and closing, which impacts the observed diversity of gs during daily time courses as well as whole plant water relations. Overall these results suggest two components that determine the variations of Wi related to gs during daily time courses: one component due to the temporal response of stomata in itself, and one component which is due to differences in the sensing of microclimate variationsL'efficience intrinsèque d'utilisation de l'eau (Wi) définit comme le rapport de l'assimilation nette de CO2 (A) sur la conductance stomatique à la vapeur d'eau (gs) est un estimateur au niveau foliaire du compromis fait par la plante entre l'accumulation de biomasse et sa consommation en eau. De nombreuses études ont révélé une forte diversité inter et intra-spécifique de ce trait intégré dans le temps dont l'origine est encore mal connue. Les travaux réalisés sur les variations journalières de A et gs ont jusqu'à maintenant révélé un rôle plus important de la diversité de gs dans la diversité de Wi. Une approche de modélisation inversée a permis de décomposer les variations de gs, observées lors de cinétiques journalières, sous la forme de paramètres décrivant les réponses stomatiques aux différentes variables microclimatiques. Comparé aux modèles décrivant les variations de gs en régime permanent, le développement d'un nouveau modèle dynamique a permis d'ajouter une dimension temporelle essentielle décrivant la réponse temporelle des stomates aux variations microclimatiques. La diversité des réponses temporelles des stomates détectée ne semble pas dépendre de leur densité ou de leur taille. Elle présente toutefois une asymétrie entre l'ouverture et la fermeture des stomates qui participe à la diversité des variations journalières de gs et impacte le bilan hydrique journalier au niveau du plant entier. Ainsi, on peut distinguer deux composantes aux variations journalières de Wi liées à gs : une composante temporelle due à la lente réponse des stomates et une autre composante due aux différences de perception des variations du microclima

    Modélisation des variations journalières de la conductance stomatique (apport d'une approche dynamique et conséquences sur l'efficience intrinsèque d'utilisation de l'eau chez le chêne)

    No full text
    L'efficience intrinsèque d'utilisation de l'eau (Wi) définit comme le rapport de l'assimilation nette de CO2 (A) sur la conductance stomatique à la vapeur d'eau (gs) est un estimateur au niveau foliaire du compromis fait par la plante entre l'accumulation de biomasse et sa consommation en eau. De nombreuses études ont révélé une forte diversité inter et intra-spécifique de ce trait intégré dans le temps dont l'origine est encore mal connue. Les travaux réalisés sur les variations journalières de A et gs ont jusqu'à maintenant révélé un rôle plus important de la diversité de gs dans la diversité de Wi. Une approche de modélisation inversée a permis de décomposer les variations de gs, observées lors de cinétiques journalières, sous la forme de paramètres décrivant les réponses stomatiques aux différentes variables microclimatiques. Comparé aux modèles décrivant les variations de gs en régime permanent, le développement d'un nouveau modèle dynamique a permis d'ajouter une dimension temporelle essentielle décrivant la réponse temporelle des stomates aux variations microclimatiques. La diversité des réponses temporelles des stomates détectée ne semble pas dépendre de leur densité ou de leur taille. Elle présente toutefois une asymétrie entre l'ouverture et la fermeture des stomates qui participe à la diversité des variations journalières de gs et impacte le bilan hydrique journalier au niveau du plant entier. Ainsi, on peut distinguer deux composantes aux variations journalières de Wi liées à gs : une composante temporelle due à la lente réponse des stomates et une autre composante due aux différences de perception des variations du microclimatIntrinsic water use efficiency (Wi), defined as the ratio between net CO2 assimilation rate (A) and stomatal conductance to water vapour (gs), is a leaf level estimator of the trade-off between biomass accumulation and water loss at the plant level. A number of studies have shown a strong inter and intra-specific diversity, usually using a time integrated estimator of this trait. However, the origin of this diversity is not yet well known. Up to now, research on the daily variations of Wi have shown a stronger influence of gs on the diversity of Wi as compared to A. An inverse modelling approach has allowed partitioning the variations of gs observed during daily time-courses into parameters, which describe the stomatal responses to different microclimatic variables. Compared to steady-state gs models, the development of a new dynamic model of gs has allowed adding a necessary temporal dimension, which describes the temporal response of stomata to environmental variations. The observed diversity of these temporal stomatal responses was not related to stomatal density or size. The temporal responses of stomata were shown to be asymmetric between opening and closing, which impacts the observed diversity of gs during daily time courses as well as whole plant water relations. Overall these results suggest two components that determine the variations of Wi related to gs during daily time courses: one component due to the temporal response of stomata in itself, and one component which is due to differences in the sensing of microclimate variationsMETZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Genetic determinism of water use efficiency in pedunculate oak

    No full text
    Genetic diversity in intrinsic water use efficiency (Wi) has been studied within a pedunculate oak (Quercus robur L.) family. Wi is defined at the leaf level as the ratio between net CO2 assimilation rate and stomatal conductance to water vapour. For large scale phenotyping, this trait can be estimated by measuring carbon isotope composition (δ13C) on organic material (leaves, wood). Genetic determinism for Wi was evaluated using a genetic mapping/quantitative trait loci (QTLs) approach and several regions were detected on the genetic map. Phenotypes of this family have been investigated intensively and partitioning of the observed diversity of Wi has shown a strong influence of stomatal conductance, whereby variation in Wi was related to variation in stomatal density and stomatal sensitivity to diurnal courses of irradiance. A modelling approach was used to detect more details of functional differences among genotypes. A complementary molecular biology approach was used to create a list of possible candidate genes related to the variability of Wi, using differential gene expression, as well as the study of the ERECTA gene, which is known to be related to variation in Wi in Arabidopsis thaliana

    Genetic determinism of water use efficiency in pedunculate oak

    No full text
    Genetic diversity in intrinsic water use efficiency (Wi) has been studied within a pedunculate oak (Quercus robur L.) family. Wi is defined at the leaf level as the ratio between net CO2 assimilation rate and stomatal conductance to water vapour. For large scale phenotyping, this trait can be estimated by measuring carbon isotope composition (δ13C) on organic material (leaves, wood). Genetic determinism for Wi was evaluated using a genetic mapping/quantitative trait loci (QTLs) approach and several regions were detected on the genetic map. Phenotypes of this family have been investigated intensively and partitioning of the observed diversity of Wi has shown a strong influence of stomatal conductance, whereby variation in Wi was related to variation in stomatal density and stomatal sensitivity to diurnal courses of irradiance. A modelling approach was used to detect more details of functional differences among genotypes. A complementary molecular biology approach was used to create a list of possible candidate genes related to the variability of Wi, using differential gene expression, as well as the study of the ERECTA gene, which is known to be related to variation in Wi in Arabidopsis thaliana

    Map of <i>AQP</i> responsiveness.

    No full text
    <p>Regulations of <i>AQP</i> expression in response to distinct cues are depicted in distincft organs and tissues: leaf (L), root (R), xylem (X), bark (B), stem (St), floral bud (Fb), leaf bud (Lb) and suspension cell (SC). The number of experiments analysed is given in the heading. Responsiveness is described as follow: “−” denotes absence of regulation (FC<1.5), “C” denotes consistent regulations (FC≥1.5, 100% cases), a number denotes intermediary cases (FC≥1.5, number of cases). A cross indicates interaction: both down- and up-regulations are observed within a category (FC≥1.5).</p
    corecore