62 research outputs found

    Geometric and compositional influences on spin-orbit induced circulating currents in nanostructures

    Get PDF
    Circulating orbital currents, originating from the spin-orbit interaction, are calculated for semiconductor nanostructures in the shape of spheres, disks, spherical shells and rings for the electron ground state with spin oriented along a symmetry axis. The currents and resulting orbital and spin magnetic moments, which combine to yield the effective electron g factor, are calculated using a recently introduced formalism that allows the relative contributions of different regions of the nanostructure to be identified. For all these spherically or cylindrically symmetric hollow or solid nanostructures, independent of material composition and whether the boundary conditions are hard or soft, the dominant orbital current originates from intermixing of valence band states in the electron ground state, circulates within the nanostructure, and peaks approximately halfway between the center and edge of the nanostructure in the plane perpendicular to the spin orientation. For a specific material composition and confinement character, the confinement energy and orbital moment are determined by a single size-dependent parameter for spherically symmetrical nanostructures, whereas they can be independently tuned for cylindrically symmetric nanostructures.Comment: 22 pages, 20 figure

    Spin-orbit-induced circulating currents in a semiconductor nanostructure

    Get PDF
    Circulating orbital currents produced by the spin-orbit interaction for a single electron spin in a quantum dot are explicitly evaluated at zero magnetic field, along with their effect on the total magnetic moment (spin and orbital) of the electron spin. The currents are dominated by coherent superpositions of the conduction and valence envelope functions of the electronic state, are smoothly varying within the quantum dot, and are peaked roughly halfway between the dot center and edge. Thus the spatial structure of the spin contribution to the magnetic moment (which is peaked at the dot center) differs greatly from the spatial structure of the orbital contribution. Even when the spin and orbital magnetic moments cancel (for g=0g=0) the spin can interact strongly with local magnetic fields, e.g. from other spins, which has implications for spin lifetimes and spin manipulation.Comment: 6 pages, 3 figure

    g-Factors and diamagnetic coefficients of electrons, holes and excitons in InAs/InP quantum dots

    Get PDF
    The electron, hole, and exciton g-factors and diamagnetic coefficients have been calculated using envelope-function theory for cylindrical InAs/InP quantum dots in the presence of a magnetic field parallel to the dot symmetry axis. A clear connection is established between the electron g-factor and the amplitude of the those valence-state envelope functions which possess non-zero orbital momentum associated with the envelope function. The dependence of the exciton diamagnetic coefficients on the quantum dot height is found to correlate with the energy dependence of the effective mass. Calculated exciton g-factor and diamagnetic coefficients, constructed from the values associated with the electron and hole constituents of the exciton, match experimental data well, however including the Coulomb interaction between the electron and hole states improves the agreement. Remote-band contributions to the valence-band electronic structure, included perturbatively, reduce the agreement between theory and experiment.Comment: 12 pages, 7 figure

    Size dependent exciton g-factor in self-assembled InAs/InP quantum dots

    Get PDF
    We have studied the size dependence of the exciton g-factor in self-assembled InAs/InP quantum dots. Photoluminescence measurements on a large ensemble of these dots indicate a multimodal height distribution. Cross-sectional Scanning Tunneling Microscopy measurements have been performed and support the interpretation of the macro photoluminescence spectra. More than 160 individual quantum dots have systematically been investigated by analyzing single dot magneto-luminescence between 1200nm and 1600 nm. We demonstrate a strong dependence of the exciton g-factor on the height and diameter of the quantum dots, which eventually gives rise to a sign change of the g-factor. The observed correlation between exciton g-factor and the size of the dots is in good agreement with calculations. Moreover, we find a size dependent anisotropy splitting of the exciton emission in zero magnetic field.Comment: 15 pages, 7 figure

    Single InAs quantum dot arrays and directed self-organization on patterned GaAs (311)B substrates

    Get PDF
    Formation of laterally ordered single InAs quantum dot (QD) arrays by self-organized anisotropic strain engineering of InGaAs/GaAs superlattice templates on GaAs (311)B by molecular beam epitaxy is achieved through optimization of growth temperature, InAs amount, and annealing. Directed self-organization of these QD arrays is accomplished by coarse substrate patterns providing absolute QD position control over large areas. Due to the absence of one-to-one pattern definition the site-controlled QD arrays exhibit excellent optical properties revealed by resolution limited (80 µeV) linewidth of the low-temperature photoluminescence from individual QDs. © 2009 American Institute of Physics

    Spatial structure of Mn-Mn acceptor pairs in GaAs

    Get PDF
    The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show that the crosslike shape of the Mn-acceptor wavefunction in GaAs persists even at very short Mn-Mn spatial separations. The resilience of the Mn-acceptor wave-function to high doping levels suggests that ferromagnetism in GaMnAs is strongly influenced by impurity-band formation. The envelope-function and tight-binding models predict similarly anisotropic overlaps of the Mn wave-functions for Mn-Mn pairs. This anisotropy implies differing Curie temperatures for Mn δ\delta-doped layers grown on differently oriented substrates.Comment: 4 pages, 4 figure

    Magneto-gyrotropic effects in semiconductor quantum wells (review)

    Full text link
    Magneto-gyrotropic photogalvanic effects in quantum wells are reviewed. We discuss experimental data, results of phenomenological analysis and microscopic models of these effects. The current flow is driven by spin-dependent scattering in low-dimensional structures gyrotropic media resulted in asymmetry of photoexcitation and relaxation processes. Several applications of the effects are also considered.Comment: 28 pages, 13 figure

    Spatial structure of an individual Mn acceptor in GaAs

    Get PDF
    The wave function of a hole bound to an individual Mn acceptor in GaAs is spatially mapped by scanning tunneling microscopy at room temperature and an anisotropic, cross-like shape is observed. The spatial structure is compared with that from an envelope-function, effective mass model, and from a tight-binding model. This demonstrates that anisotropy arising from the cubic symmetry of the GaAs crystal produces the cross-like shape for the hole wave-function. Thus the coupling between Mn dopants in GaMnAs mediated by such holes will be highly anisotropic.Comment: 3 figures, submitted to PR

    Magnetic Anisotropy of Single Mn Acceptors in GaAs in an External Magnetic Field

    Get PDF
    We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported by theoretical calculations based on a tightbinding model of Mn acceptors in GaAs. For Mn acceptors on the (110) surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantly the magnetic anisotropy landscape. However the acceptor hole wavefunction is strongly localized around the Mn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed on deeper layers below the surface, the acceptor hole wavefunction is more delocalized and the corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However the magnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis. We predict that substantially larger magnetic fields are required to observe a significant field-dependence of the tunneling current for impurities located several layers below the GaAs surface.Comment: Non
    • …
    corecore