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Geometric and compositional influences on spin-orbit induced circulating
currents in nanostructures
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1PSN, COBRA Research Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

2Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
(Received 24 July 2014; revised manuscript received 23 September 2014; published 22 October 2014)

Circulating orbital currents, originating from the spin-orbit interaction, are calculated for semiconductor
nanostructures in the shape of spheres, disks, spherical shells, and rings for the electron ground state with spin
oriented along a symmetry axis. The currents and resulting orbital and spin magnetic moments, which combine
to yield the effective electron g factor, are calculated using a recently introduced formalism that allows the
relative contributions of different regions of the nanostructure to be identified at zero magnetic field. For all these
spherically or cylindrically symmetric hollow or solid nanostructures, independent of material composition and
whether the boundary conditions are hard or soft, the dominant orbital current originates from intermixing of
valence-band states in the electron ground state, circulates within the nanostructure, and peaks approximately
halfway between the center and edge of the nanostructure in the plane perpendicular to the spin orientation.
For a specific material composition and confinement character, the confinement energy and orbital moment are
determined by a single size-dependent parameter for spherically symmetrical nanostructures, whereas they can
be independently tuned for cylindrically symmetric nanostructures.

DOI: 10.1103/PhysRevB.90.165306 PACS number(s): 75.75.−c, 71.70.Ej, 73.21.La, 85.75.−d

I. INTRODUCTION

Spin-correlated orbital currents provide the source [1] of
the dramatic modification of the effective magnetic moment
μ of the electron in a semiconductor [2,3]. Confinement
has been shown to quench this magnetic moment, even for
nanostructures with spherical symmetry [1,4–6], to a much
greater degree than expected from confinement-induced shifts
in semiconductor band gap, spin-orbit splitting, and masses.
Confinement-induced effects on the magnetic moment μ

also directly modify the temporal evolution of a spin in a
magnetic field [7–15] by slowing or speeding precession,
or through forms of electrically driven resonance such as
g-tensor modulation resonance [16]. These modifications
have been suggested as means to manipulate the spins for
quantum computation [17,18]. Recently the spatial structure
of these orbital currents was calculated directly in spherical
and cylindrical III-V semiconductor nanostructures [1] and
the peak currents were identified to be midway from the center
of the nanostructure to the edge of the nanostructure in the
plane perpendicular to the magnetic moment’s orientation.
This suggests that removing the material in the center of the
nanostructure, forming a shell or ring, might have minimal
effect on the electron’s magnetic moment. It also suggests
where electrical gates might be positioned to have the greatest
effect on the electron’s magnetic moment.

Here, we calculate the spin-correlated orbital currents for
spheres, cylinders, spherical shells, and rings, identifying the
response of the spin-correlated orbital currents to changes in
topology, to changes in disk and ring aspect ratio, and to the
softness of the confining potential. The overall conclusions of
Ref. [1] regarding the source of the orbital current remain valid
in these structures. That is, the dominant orbital contribution

*j.v.bree@tue.nl
†michael_flatte@mailaps.org

to the spin’s magnetic moment originates from a ground-state,
dissipationless current loop circulating within the dot. The
calculations use semiconductor envelope-function theory for
direct-gap semiconductor quantum dots [19,20]. The contribu-
tions from spin-orbit-correlated circulating currents are fully
identified and broken down into constituent contributions.
Contributions largely neglected in Ref. [1] because they are
not the largest contributors to the magnetic moment include
contributions from orbital currents within a unit cell and
contributions associated with a single envelope function; both
are discussed in detail here. The boundary conditions for
these nanostructures are considered to be hard wall, which are
appropriate for many colloidal quantum dots and nanowires, or
harmonic and soft, characteristic of electrostatic confinement.
Although this approach can, in principle, be generalized to
other electronic states, including excited electronic states and
hole states, this generalization requires dealing with signifi-
cant additional complexities associated with nonzero angular
momentum in the conduction-band envelope functions. Thus,
here we focus on orbital contributions to the magnetic moment
along a symmetry axis of a sphere, shell, disk, or ring; in-plane
electron magnetic moments will be the subject of future work.

The paper’s structure is as follows. In Sec. II, the theoretical
formalism introduced in Ref. [1] to calculate the orbital
contributions to the spin’s magnetic moment is summarized, as
it is relied on for later sections. The formalism is then applied
to spheres in Sec. III A, spherical shells in Sec. III B, disks with
hard-wall boundaries in Sec. IV A, disk with soft boundaries
in Sec. IV B, and rings in Sec. IV C. We finally draw general
conclusions on all these different geometries in Sec. V.

II. THEORETICAL FRAMEWORK

Throughout this paper, we focus on the spin-oriented
electron ground state �(r) of a nanostructure. The magnetic
moment μtot contains contributions from both the spin and the
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orbital motion of the state:

μtot = μspin + μorb. (1)

This moment can couple to an external applied magnetic field
B via the Zeeman interaction

HZeeman = −μtot · B. (2)

In absence of a magnetic field, the ground state will be degener-
ate due to time-reversal invariance [21]; two degenerate states
are the time reversal of each other, and have an oppositely
oriented magnetic moment. It therefore suffices to examine
only one state of the Kramers doublet. In this paper, we fix the
orientation of the magnetic moment along the symmetry axis
of the nanostructure, which can be experimentally realized
by either electrical spin injection or optical orientation. This
approach is valid in the limit of zero magnetic field; explicit
inclusion of a magnetic field would be needed to investigate
the magnetic field modifications of the magnetic moment, as
studied in Refs. [22–24].

The magnetic moment is related to the g factor, which is
often used in an experimental context and can be defined as
[5]

g = E↑ − E↓
μBB

, (3)

where E↑,↓ are the energies associated with spin up/down,
and μB = e�/2m0 is the Bohr magneton. Using the Zeeman
interaction and time-reversal symmetry, we can relate the g

factor to the magnetic moment in the limit of zero magnetic
field:

|g| = lim
B→0

(−μtot · B) − (μtot · B)

μBB
(4)

= 2
μtot

μB

= 2

(
μspin

μB

+ μorb

μB

)
, (5)

where we assumed the magnetic field and the magnetic
moment to be collinear. We would like to stress that the factor
2 has no relation to the free-electron g factor, and stems solely
from the Kramers degeneracy. The term μorb refers to the
orbital contribution to the spin’s magnetic moment, not the
spin-independent orbital moment of the electron. Subsequently
in the text, however, we will refer to this simply as the orbital
magnetic moment. Even though we will focus on the spin
and orbital contributions to the spin’s magnetic moment in
the rest of this paper, the above relation enables us to connect
them to an experimentally measurable g factor. In the next two
sections, we present the theoretical framework to calculate the
orbital and spin moments.

A. Orbital moment

The orbital magnetic moment μorb is related [25] to the
orbital current density j(r) by

μorb = 1

2

∫
V

r × j(r)d3r = 1

2

∑
s

∫
Vs

r × j(r)d3r, (6)

where we have considered the moment as a summation of
moments arising from each of s unit cells having volume Vs .

FIG. 1. (Color online) The orbital current within a unit cell can
be split into an itinerant contribution 〈j〉s , and a localized contribution
j(r) − 〈j〉s . Vector rs points to the center of unit cell s.

We define the average current density 〈j〉s in a unit cell as

〈j〉s = 1

Vs

∫
Vs

j(r)d3r. (7)

Using 〈j〉s we split the orbital current into an itinerant current
(IC) that flows into and out of a unit cell, and a localized
current (LC) whose average over the unit cell vanishes, given
by j(r) − 〈j〉s (see also Fig. 1). The magnetic moment can then
be expressed as [26]

μorb

= 1

2

∑
s

{
Vsrs ×〈j〉s︸ ︷︷ ︸

Itinerant current (IC)

+
∫

Vs

(r − rs) × {j(r) −〈j〉s}d3r︸ ︷︷ ︸
Localized (circulating) current (LC)

}
,

(8)

where rs is the vector pointing to unit cell s. The first term is the
orbital moment due to itinerant currents, while the second term
is the sum of orbital moments due to a (circulating) current
localized within each unit cell. For an isolated atom, the first
term is zero. The spatial extent of states in semiconductors
can be substantial, leading to a much larger lever arm for
the moments arising from itinerant currents than for the
moments arising from localized currents (i.e., rs � r − rs).
These orbital currents follow from [27]

j(r) = e�

m0
Im{�∗(r)∇�(r)}. (9)

One can conceptually think of the state �(r) as being
composed out of traveling and standing waves. The latter are
formed by reflection from the boundaries of the nanostructure,
whereas the former are contained inside the nanostructure.
The current is therefore directed parallel to the surface of the
nanostructure and is divergence free, which is in compliance
with the assertion of �(r) being a stationary state. To
understand the origin of the traveling waves, we need to
describe the state �(r) in more detail. For nanostructures, the
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envelope function approximation (EFA) is an accurate way to
do so [28,29]:

�(r) =
∑

i

Fi(r)ui(r), (10)

where the wave function is written as the product of a Bloch
state ui(r) of band i with its corresponding spatially slowly
varying envelope function Fi(r), assumed to be constant in a
unit cell. This results in currents which are related to the Bloch
velocity (BV) and envelope velocity (EV):

j(r) = e�

m0

∑
i,j

Im{u∗
i (r)uj (r)[F ∗

i (r)∇Fj (r)]︸ ︷︷ ︸
Envelope velocity related (EV)

+ F ∗
i (r)Fj (r)[u∗

i (r)∇uj (r)]︸ ︷︷ ︸
Bloch velocity related (BV)

}. (11)

The BV related current dominates over the EV related current
by ∼d/a0, where d is the typical size of the envelope wave
function and a0 the size of the unit cell [1]. This coincides
with the condition for the validity of the envelope-function
approximation. For realistically sized nanostructures, the BV
related current is �5 times the EV related current. For
illustrative purposes, consider the states labeled by i as
originating from the conduction band, whereas states labeled
by j are related to the valence band. It is then apparent that
almost all of the more important BV related orbital current
arises due to intermixing of valence states into the electron
ground state of a nanostructure; the Fj (r) must be nonzero.
The minimal model to accurately calculate the orbital current
must therefore contain at least the eight bands describing the
conduction and valence bands. We will now separately work
out the BV and EV related currents.

The unit-cell averaged current density for the BV related
current 〈j〉BV becomes

〈j〉BV(rs) = 1

Vs

e�

m0

∑
i,j

Im{F ∗
i (rs)Fj (rs)〈ui |∇|uj 〉}, (12)

where 〈ui |∇|uj 〉 are momentum matrix elements. These are
only nonzero when i labels a conduction-band state and
j a valence-band state. For the electron ground state in a
nanostructure, Fi(rs) will be an s-like state and Fj (rs) a
p-like state. The product of these envelope wave functions
will therefore peak roughly midway between the center and
edge of a nanostructure. Since we are examining a stationary
state, the divergence of the current is zero. The current must
therefore circulate within the nanostructure along a closed
surface. This resembles a current loop extended throughout
the nanostructure and arising completely from intermixing of
valence-band states in the ground state of the nanostructure.
This BV related itinerant current leads to a magnetic moment

μIC-BV(rs) = μB

∑
i,j

Im{F ∗
i (rs)Fj (rs)(rs × 〈ui |∇|uj 〉)}.

(13)

The BV related localized current leads to a magnetic moment

μLC-BV(rs) = μB

∑
i,j

Im{F ∗
i (rs)Fj (rs)〈ui |LB|uj 〉}, (14)

where LB = (r − rs) × ∇ is the angular momentum operator
acting on the Bloch functions. The Bloch angular momentum
does not exceed 1, and therefore μIC-BV � μLC-BV. Whereas
the spatial distribution of μIC-BV follows that from the above-
discussed 〈j〉BV, the spatial distribution of μLC-BV is given by
the the product of two p-like envelope states since the Bloch
angular momentum is only nonzero for valence states. The
spatial distributions of both magnetic moments have therefore
an odd spatial symmetry.

The unit-cell averaged current density for the EV related
current

〈j〉EV(rs) = 1

Vs

e�

m0

∑
i

Im{F ∗
i (rs)∇Fi(rs)}, (15)

where we have used the orthonormality of the Bloch functions.
The envelope wave function of the conduction band does
not contribute to this current for the electron ground state
since it does not consist of a traveling wave. This current is
therefore solely determined by the envelope wave functions
associated with the valence band; the spatial distribution of
〈j〉EV is the product of a p-like Fi(rs) and a p-like ∇Fi(rs),
and has therefore the same odd spatial symmetry as 〈j〉BV.
The magnetic moment μIC-EV originating from the EV related
itinerant current becomes

μIC-EV(rs) = μB

∑
i

Im{F ∗
i (rs)LEFi(rs)}, (16)

where LE = rs × ∇ is the angular momentum operator acting
on the envelope wave functions. The EV related localized
current leads to a magnetic moment

μLC-EV(rs) = μB

∑
i,j

Im{F ∗
i (rs)〈ui |r − rs |uj 〉 × ∇Fj (rs)},

(17)

where 〈ui |r − rs |uj 〉 are dipole matrix elements. These are
only nonzero when i labels a conduction-band state and j

a valence-band state because of the parity quantum numbers.
This means that the spatial distribution will have an even spatial
symmetry: both Fi(rs) and ∇Fj (rs) are s like. This is different
from the other contributions to the orbital moment, which
all have an odd spatial symmetry. We can relate the dipole
matrix elements to the momentum matrix elements through
the commutation relation [34]

[H,r] = �

im0
p (18)

by which

〈φi |p|φj 〉 = 〈φi | im0

�
[H,r]|φj 〉 (19)

= im0

�
(Ei − Ej )〈φi |r|φj 〉 (20)

and therefore

〈ui |r − rs |uj 〉 = − �
2

m0(Ei − Ej )
〈ui |∇|uj 〉. (21)

The total orbital moment μorb is the sum of μIC-BV, μLC-BV,
μIC-EV, and μLC-EV. We replace the summation over s with an

165306-3



VAN BREE, SILOV, KOENRAAD, AND FLATTÉ PHYSICAL REVIEW B 90, 165306 (2014)

TABLE I. Material parameters of the different zinc-blende materials used throughout the paper.

Material Eg (eV) � (eV) P0 (eV Å) γ L
1 γ L

2 γ L
3 |χ | μRoth (μB ) μorb,exp (μB ) [30] Deviation of μ (μB )

HgTe [31] −0.303 1.00 8.29 −18.68 −10.19 −9.56 31.1 |28.4| |21.5| 6.9 (+32%)
InSb [32] 0.235 0.81 9.426 34.8 15.5 16.5 32.2 −25.6 −26.7 1.1 (−4%)
InAs [32] 0.417 0.39 9.055 20 8.5 9.2 25.5 −8.19 −8.65 0.46 (−5%)
Ga0.47In0.53As [32] 0.816 0.329 9.47 11.01 4.18 4.84 13.9 −2.76 −3.25 0.49 (−15%)
GaAs [32] 1.519 0.341 9.764 6.98 2.06 2.93 5.9 −1.00 −1.22 0.22 (−18%)
CdTe [31] 1.60 0.91 8.88 5.29 1.89 2.46 7.8 −1.56 −1.83 0.27 (−15%)
CdSe [33] 1.84 0.42 7.40 3.38 1.12 1.47 7.6 −0.48
ZnTe [31] 2.39 0.92 8.53 3.74 1.07 1.64 5.0 −0.74 −1.21 0.47 (−38%)
ZnSe [31] 2.82 0.43 9.61 3.77 1.24 1.67 7.0 −0.38 −0.47 0.09 (−19%)
ZnS [31] 3.80 0.07 8.82 2.54 0.75 1.06 5.6 −0.03 −0.06 0.03 (−50%)

integral over the whole volume of the state since the state �(r)
is extended over many unit cells.

B. Spin moment

Using the nonrelativistic limit of the Dirac equation, we
find the spin moment to be given by [27]

μspin = e�

2m0

∑
s

∫
Vs

�∗(r)σ�(r)d3r, (22)

where σ = (σx,σy,σz) is the Pauli vector, with σx,y,z the Pauli
matrices. We have again split the integration over the whole
state into a summation of integrations over the unit cell. We
can then proceed and use the EFA for the wave function �(r),
by which the spin moment becomes

μspin(rs) = μB

∑
i,j

F ∗
i (rs)Fj (rs)〈ui |σ |uj 〉. (23)

The spatial structure of the spin moment is therefore given
by the product F ∗

i (rs)Fj (rs). If we assume that the elec-
tron ground state of the nanostructure is dominated by the
conduction-band state, the spatial distribution of the spin
moment is approximately |Fi(rs)|2, where Fi(rs) is an s-
like envelope wave function. This even spatial symmetry is
markedly different from the odd spatial symmetry of the
dominant orbital moment density μIC-BV(rs).

C. Boundary conditions and k · p model

As mentioned in Sec. II A, any accurate calculation of the
orbital current should include a minimum of eight bands. To
keep the problems analytically tractable, we choose a standard
eight-band k · p model [20] and hard-wall boundaries for
most of the nanostructures. Within k · p theory, boundary
conditions have been the subject of debate [35–37]. Since
we can assume that the electron ground state is dominated
by conduction-band states, we pragmatically opt for the
approximate boundary condition that only the conduction-
band envelope wave function needs to vanish at the boundary.
This approximation is exact for the bulk and has as much
validity as hard-wall boundaries and the envelope-function
approximation itself.

To illustrate our analytical results, we show numerical
calculations for nanostructures of different materials with
a zinc-blende crystal structure. The corresponding material

parameters are tabulated in Table I, where Eg is the band-gap
energy, � the spin-orbit splitting, P0 the momentum matrix
element, and γ L

1,2,3 are the Luttinger parameters. In an eight-
band k · p calculation, the Luttinger parameters need to be
modified for the explicit inclusion of the �c

6 band [38]:

γ1 = γ L
1 − 1

3

2m0

�2

P 2
0

Eg

, (24)

γ2 = γ L
2 − 1

6

2m0

�2

P 2
0

Eg

, (25)

γ3 = γ L
3 − 1

6

2m0

�2

P 2
0

Eg

. (26)

For most materials, there is a fairly large spread in the reported
values of the γ L

1,2,3 parameters and P0, which reflects the degree
of accuracy of the k · p model. Still, the bulk orbital moment
μRoth is fairly well reproduced using an eight-band model (see
Table I): the agreement is for most materials within 0.5μB or
15%–20%. It can clearly be observed that the model becomes
less accurate as Eg increases since the remote bands become
of equal importance to the eight bands that are explicitly
included. An improvement of the eight-band model would
involve inclusion of the �c

7,8 bands [39]. These bands would
generate additional p-like envelope wave functions in the
electron ground state, and therefore generate similar spin-orbit
correlated currents as the �v

7,8 bands. We therefore do not
expect any additional features by including additional bands,
except for improving the quantitative agreement.

III. SPHERICAL SYMMETRY

We will first examine nanostructures having spherical
symmetry. The envelope functions of such nanostructures will
exhibit spherical symmetry, if both the confinement potential
and the crystal have spherical symmetry. Fortunately, the
anisotropy of the valence band is rather small for most semi-
conductors. This can be formally analyzed by decomposing
the Hamiltonian into spherically and cubically symmetric
terms [40]. The ratio of the spherical over cubic terms can
be expressed as

χ = 2

5

(
2γ2 + 3γ3

γ3 − γ2

)
. (27)
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From Table I we see that the spherical terms are at least
five times larger than the cubic terms, so we can safely
assume that the crystal has spherical symmetry. In the spherical
approximation, the Hamiltonian will be block diagonal in a
basis of eigenstates of F and Fz, where the total angular
momentum F = LE + J = LE + LB + s (J the total Bloch
momentum, s the spin moment) [19]

H =
∑
F,Fz

HF,Fz
. (28)

These basis states can be found by using the rules for adding
angular momenta

|F,Fz; J,LE; k〉

=
J∑

Jz=−J

LE∑
LE,z=−LE

〈J,Jz; LE,LE,z|F,Fz〉|J,Jz〉|k,LE,LE,z〉,

(29)

where 〈J,Jz; LE,LE,z|F,Fz〉 are Clebsch-Gordan coefficients,
|J,Jz〉 the Bloch functions, and |k,LE,LE,z〉 the envelope wave
functions. This notation is slightly different from Sec. II,
where Bloch functions are denoted as ui(r), and envelope
wave functions as Fi(r). The envelope wave function has the
coordinate representation

〈r,θ,φ|k,LE,LE,z〉 =
√

2

π
iLE{jLE (kr) + ξyLE (kr)}YLE,z

LE
(θ,φ),

(30)

where jl(r) is the lth-order spherical Bessel function of
the first kind, yl(r) is the lth-order spherical Neumann
function of the first kind, Ym

l (θ,φ) a spherical harmonic,
and ξ a dimensionless parameter determined by the boundary
conditions. For the electron ground state it suffices to examine
the |F,Fz〉 = | 1

2 ,+ 1
2 〉 subspace since this is the lowest possible

F and | 1
2 ,− 1

2 〉 is the time-reversed state of | 1
2 ,+ 1

2 〉. Within
an eight-band k · p model, the | 1

2 ,+ 1
2 〉 subspace is spanned

by three basis states: | 1
2 ,+ 1

2 ; 1
2 ,0; k〉, | 1

2 ,+ 1
2 ; 3

2 ,1; k〉, and
| 1

2 ,+ 1
2 ; 1

2 ,1; k〉. Following the transformation of Ref. [20], we
can represent the Hamiltonian in this basis:

H 1
2 ,+ 1

2

=

⎛
⎜⎜⎜⎝

�
2

2m0
k2 −i

√
2
3P0k −i

√
1
3P0k

i

√
2
3P0k −Eg − �

2

m0

γ1+2γ23

2 k2 −√
2 �

2

m0
γ23k

2

i

√
1
3P0k −√

2 �
2

m0
γ23k

2 −Eg − � − �
2

m0

γ1

2 k2

⎞
⎟⎟⎟⎠,

(31)

where k is the radial wave number, and γ23 = 2
5γ2 + 3

5γ3 the
modified spherical Luttinger parameters. The electron ground
state can be expressed as a linear combination of the three
basis states:

|�〉 =
∣∣ 1

2 , 1
2 ; 1

2 ,0; k
〉+ α

∣∣ 1
2 , 1

2 ; 3
2 ,1; k

〉+ β
∣∣ 1

2 , 1
2 ; 1

2 ,1; k
〉√

1 + |α|2 + |β|2
, (32)

where the intermixing coefficients α and β determine the
amount of intermixing of the �v

8 (J = 3
2 ,LB = 1) and �v

7

(J = 1
2 ,LB = 1) bands into the electron ground state, which

originates predominantly from the �c
6 (J = 1

2 ,LB = 0) band.
After diagonalizing the Hamiltonian, we find the intermixing
coefficients to be

α = i

√
2

3

λ − �
2k2

2m0

kP0

(γ1 − 2γ23) �
2k2

2m0
+ (Eg + � + λ)

(γ1 − 2γ23) �2k2

2m0
+ (Eg + 2

3� + λ
) ,

β = i

√
1

3

λ − �
2k2

2m0

kP0

(γ1 − 2γ23) �
2k2

2m0
+ (Eg + λ)

(γ1 − 2γ23) �2k2

2m0
+ (Eg + 2

3� + λ
) ,

where λ = λ(k) is the confinement energy (i.e., the energy of
the state above the conduction band edge), given by one of the
roots of |H 1

2 ,+ 1
2
− λI | = 0.

A. Spheres

We start by examining solid spheres, for which the confining
potential is

V (r) =
{

0, r � R

∞, r > R
(33)

where R is the radius of the sphere. The wave function needs
to be normalizable at the origin of the sphere, hence only
spherical Bessel functions jl(kr) contribute to the envelope
wave function (ξ = 0). We assume that the electron ground
state predominantly originates from conduction band states.
We therefore choose the approximate boundary condition
〈r,θ,φ| 1

2 ,+ 1
2 ; 1

2 ,0; k〉|r=R = 0, from which the relation k = π
R

follows.
In Fig. 2, we plot the radius dependence of the confinement

energy and character of the electron ground state for an
InAs sphere. The intermixing of the valence bands is never
very large (<30%), so that their influence can be regarded
as a perturbation on the state’s dominant conduction band
character. This perturbation is proportional to the ratio of the
coupling of the bands and the energetic splitting between them.
The radius dependence of the latter leads to the maximum
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FIG. 2. (Color online) Radius dependence of the confinement
energy λ and character of the electron ground state of an InAs sphere.
The character is given in terms of the conduction-band �c

6 (blue) and
valence-bands �v

8 (red) and �v
7 (green) contributions.
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FIG. 3. (Color online) The actual and expected [see Eq. (35)]
radius Rmin where the electron ground state of spheres of different
materials has the smallest conduction-band contribution.

around 2 nm. At large R (small k), the energetic splitting is
given mainly by the energy differences between the bands
(Eg for α, Eg + � for β), resulting in a 1/R dependence of
the intermixing. At small R (large k), the energetic splitting
is dominated by the free kinetic energy of the conduction
and valence bands, which results in an R dependence of the
intermixing. The intermixing therefore peaks when the free
kinetic energy is equal to Eg for α, or Eg + � for β. This
condition can be expressed analytically in the limit of zero
spin-orbit coupling, when the free kinetic energy of the valence
band can be expressed in a simple manner:

�
2k2

2m0
+ (γ1 + 4γ23)

�
2k2

2m0
= Eg. (34)

From this condition, we can extract the radius Rmin at which
the conduction band has the smallest contribution:

Rmin = π�

√
1 + γ1 + 4γ23

2m0Eg

. (35)

The minimum radius depends therefore on the effective hole
mass and band-gap energy, which we exemplified by showing
Rmin in Fig. 3 for various semiconductor materials. Alongside
the actual Rmin, we also plot the expected Rmin on basis of the
above formula. It can be seen that the above formula is a good
predictor for Rmin, as long as �/Eg � 1 (hence not for InSb
and InAs). We find that the contribution of the conduction band
at Rmin can be expressed as

Min. contr. = 1

2 + δ − √
δ(δ + 2)

≈ 1

2
+ 1

2
√

2

√
δ, (36)

where

δ = (1 + γ1 + 4γ23)
�

2Eg

m0P
2
0

. (37)

In Fig. 4, we plot for various materials the actual minimum
contribution and the expected contribution based on the
above formula. Since we assumed � = 0, the formula is
overestimating the intermixing of the valence band and can be
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FIG. 4. (Color online) The minimum contribution of the con-
duction band of spheres of different materials as a function of the
parameter δ, along with Eq. (36).

regarded as a lower limit of the actual minimum contribution. It
can be seen that the minimum contribution is always more than
50%, and increases with Eg and a smaller effective hole mass,
which explains why In compounds have a stronger valence
band mixing than Zn compounds.

Now that the wave function of the ground state is known,
we can proceed by calculating the itinerant BV related current
density 〈j〉BV:

〈j〉BV = − eP0

2
√

6π�

Im{α − √
2β}

1 + |α|2 + |β|2 j0(kr)j1(kr) sin(θ )eφ.

(38)

As anticipated in Sec. II A, the spatial distribution of this
current is governed by the product of the envelope wave
functions associated with the conduction band j0(kr) and the
valence band j1(kr). It therefore resembles a current loop
extended throughout the quantum dot and peaks at about R/2
[see Fig. 6(a)]. Note that this current is proportional to the
factor Im

{
α − √

2β
}
, which can be expressed as

Im{α −
√

2β}

=
√

2

3

λ − �
2k2

2m0

kP0

�

(γ1 − 2γ23) �2k2

2m0
+ (Eg + 2

3� + λ
) (39)

showing explicitly the spin-orbit correlated nature of this
current: it directly depends on the spin-orbit coupling �. It
proves interesting to trace the exact origin of this current.
The direction of 〈j〉BV comes from the momentum matrix
elements 〈ui |∇|uj 〉, which are only nonzero if i labels a
conduction-band state and j a valence-band state. Because
the divergence of 〈j〉BV must be zero and the quantum dot
is spherically symmetric, the current has to flow in the eφ

direction. The matrix elements associated with this direction
can be written as 〈ui | 1

r sin θ
i
�
LB,z|uj 〉eφ , hence only Bloch

states with nonzero LB,z will contribute to 〈j〉BV. Only three of
such states are present in the |F,Fz〉 = | 1

2 ,+ 1
2 〉 electron ground

state [20]: |J,Jz; LB,LB,z〉 = | 3
2 ,+ 3

2 ; 1,+1〉, | 3
2 ,− 1

2 ; 1,−1〉,
and | 1

2 ,− 1
2 ; 1,−1〉. The former will create a current opposite
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InAs sphere. The Bloch velocity related current is �10 times the
envelope velocity related current for radii R � 1 nm.

to the latter two due to the different orientation of LB. The
degree of cancellation depends on the strength of the spin-orbit
coupling, as this will tune the presence of the | 1

2 ,− 1
2 ; 1,−1〉

(split-off) state. This mechanism has also been identified to
determine the bulk g factor of semiconductors [3].

The itinerant EV related current density 〈j〉EV can be
more generally calculated using the general envelope state
|k,LE,LE,z〉:

〈j〉EV
|k,LE,LE,z〉 = 2e�

m0
LE,z

jLE,z
(kr)2

πr sin θ

∣∣YLE,z

LE
(θ,φ)

∣∣2eφ (40)

by which 〈j〉EV of the electron ground state becomes

〈j〉EV = − e�

8πm0

|α|2 − 2|β|2
1 + |α|2 + |β|2

j1(kr)2

r
sin(θ )eφ. (41)

The envelope wave function associated with the conduction
band has LE = 0 and therefore does not contribute to 〈j〉EV;
this current originates solely from the valence band. The spatial
distribution is therefore governed by the square of the valence-
band envelope wave functions, i.e., j1(kr)2, although it has the
same spatial symmetry as 〈j〉BV. We again emphasize that this
current has as spin-orbit correlated nature: the factor |α|2 −
2|β|2 is directly proportional to �. We plot both the peak
current densities 〈j〉BV

max and 〈j〉EV
max in Fig. 5, together with the

ratio between them. It can be clearly observed that the Bloch
velocity related current is �10 times larger than the envelope
velocity related current for realistic sizes, as was anticipated
in Sec. II A.

Using Eqs. (13) and (14), we can plot the orbital moment
densities related to the Bloch velocity [see Figs. 6(c) and 6(d)].
As expected, their spatial distributions have the same (odd)
spatial symmetry, although they differ slightly in the exact
distribution. We can do the same for the envelope velocity
related orbital momenta in Figs. 6(e) and 6(f), using Eqs. (15)
and (16). As expected, the spatial distribution of μIC-EV has an
odd spatial symmetry, whereas μLC-EV has an even spatial
symmetry. The latter shares this symmetry with the spin
moment density, which is plotted in Fig. 6(b) using Eq. (23).
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FIG. 6. (Color online) (a) The spatial distribution of the normal-
ized magnitude of the ey component of 〈j〉BV of a sphere. This current
density peaks roughly at R/2 and resembles a current loop. (b)–(f) The
magnetic moment density of the different components contributing
to the orbital moment [(c)–(f)] and the spin moment (b) of a sphere.
It can clearly be observed that μspin and μLC-EV have an even spatial
symmetry, whereas the other orbital moments have an odd spatial
symmetry. All figures are xz cross sections; the white/black circles
mark the boundary of the sphere.

As discussed in Ref. [1], these different symmetries can
have substantial consequences, for example, for the hyperfine
coupling or interactions with nearby magnetic moments.
Although the spin moment density seems to be parallel to
the z direction, there is in fact a very small x component due
to intermixing of the valence-band states. This component has
an odd spatial symmetry and is so small, �0.1% of the z

component, that we have neglected it for the plot.
By integrating the moment densities over the whole state,

we can compute the different contributions to the integrated
orbital magnetic moment:

μIC-BV = −μB

√
2

3

m0P0R

π�2

Im{α − √
2β}

1 + |α|2 + |β|2 ez, (42)

μLC-BV = +μB

[
1

3

|α|2 − 2|β|2
1 + |α|2 + |β|2 + 2

9

Im{α − √
2β}2

1 + |α|2 + |β|2
]

ez,

(43)
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μIC-EV = −μB

1

3

|α|2 − 2|β|2
1 + |α|2 + |β|2 ez, (44)

μLC-EV = −μB

2

3

√
2

3

πP0

R

Im
{

1
Eg

α −
√

2
Eg+�

β
}

1 + |α|2 + |β|2 ez (45)

and likewise we can calculate the integrated spin moment:

μspin = μB

[
1 −
(

2

3

)2 Im{α − √
2β}2

1 + |α|2 + |β|2
]

ez. (46)

In Fig. 7, we plot these moments as a function of radius R

for an InAs sphere. For a wide range of radii, the dominant
contribution to the orbital moment is μIC-BV. This was to be
expected: the largest moment is generated when both the lever
arm (itinerant current) and momentum (Bloch velocity) are
largest. We will therefore first concentrate on μIC-BV. In the
limit of infinite radius R (i.e., the bulk limit), μIC-BV reduces
to the Roth formula [2]

lim
R→∞

μIC-BV = −μB

�

3Eg(Eg + �)

2m0P
2
0

�2
ez = μRoth. (47)

As the radius becomes smaller, μIC-BV quenches since the
orbital extent (the lever arm) of the envelope wave function
becomes smaller. The current distribution associated with
μIC-BV resembles a current loop, as can be seen in Fig. 6(a).
It proves insightful to make an analogy with a simple current
loop, carrying a current I at radius R, generating a moment

μloop = πIR2. (48)

This immediately shows that there should be an R2 dependence
on the orbital moment. We can formally verify this dependency
by calculating the current IIC-BV in the spheres:

IIC-BV =
∫

〈j〉BV · n da (49)

= − eP0√
6π�R

Im{α − √
2β}

1 + |α|2 + |β|2
∫ 2π

0

sin χ

χ
dχ, (50)

which is also plotted in Fig. 7. It can be immediately verified
that the analogy with the classical current loop holds: the
ratio between the current IIC-BV and orbital moment μIC-BV
has an R2 dependence. The mechanism leading to quenching
of μIC-BV is therefore an interplay of two effects: quantum
confinement limits the extension of the envelope wave function
and reduces thereby the lever arm, whereas intermixing of the
valence bands determines the amount of current that circulates
in the sphere.

The other contributions to the orbital moment have a non-
monotonic dependence on R. As expected, these contributions
to the orbital moment are small compared to μIC-BV since
either the lever arm (localized currents) or the momentum
(envelope velocity) is small. In particular, μLC-BV is small
since 〈ui |LB|uj 〉 is only nonzero for Bloch functions not
involving the conduction band. Therefore, μLC-BV is (more
or less) proportional to the intermixing of valence bands and is
always small, which can be verified by comparison of Figs. 2
and 7. A similar argument holds for μIC-EV, which originates
from 〈j〉EV and is therefore directly proportional to the amount
of the intermixing of valence states since the conduction-band
envelope has LE = 0. Note that μLC-BV ≈ −μIC-EV, so these
moments cancel each other when added to the total orbital
moment. This (near) cancellation arises from the fact that
LB,z = −LE,z for most bands contributing to the electron
ground state. A more detailed analysis of this effect will be
performed for the disks with hard-wall boundaries at the end
of Sec. IV A. Lastly, the behavior of μLC-EV stands out: it gets
larger for smaller R. As can be seen from Eq. (17), μLC-EV
is proportional to ∇Fj (rs) and will therefore become larger
as the quantum dot becomes smaller. The envelope-function
approximation becomes less accurate as R becomes smaller,
and quantities involving the gradient of the envelope wave
function will be affected first. We therefore plot the moments
related to the envelope velocity dotted for R � 3 nm.

The spin moment is almost constant at one μB , dropping
about 1% at a radius of 7 nm. Even though a sizable amount
of valence states mix into the electron ground state, the effect
on the spin moment is negligible due to the same cancellation
mechanism discussed for 〈j〉BV. In fact, the deviation of the
spin moment is proportional to (square of) the same factor
Im{α − √

2β}. This means that these deviations vanish in
absence of spin-orbit coupling.

Up to now, we have used InAs as the constituent material
of the spheres, but it is also interesting to see how the orbital
moment is quenched in other semiconductors. We therefore
show in Fig. 8 the dominant orbital moment μIC-BV normalized
to the Roth formula [2] for spheres of various materials.
Both the current distribution and the mechanism leading to
quenching of the orbital moment are similar to what was
found for InAs spheres. The onset of quenching of the orbital
moment, however, depends on the material of the sphere. This
observation can be made more explicit by analyzing μIC-BV in
the limit of small R:

lim
R→0

μIC-BV

μRoth
= Eg(Eg + �)

(1 + γ1 − 2γ23)(1 + γ1 + 4γ23)

[
2m0R

2

�2π2

]2

≡
(

R

R∗

)4

, (51)
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where we have defined a material-dependent radius R∗, which
renormalizes μIC-BV at small R (see dotted lines in Fig. 8). A
large R∗ means that the quenching starts at relatively large R,
and arises from a small effective hole mass, a small band gap,
or a small spin-orbit coupling. This explains why spheres from
In compounds start to quench at larger R compared to spheres
from Zn compounds.

Aside from semiconductors, it is also interesting to see
the effects of spin-orbit correlated currents in semimetals.
We focus here on zinc-blende HgTe, of which the synthesis
of small colloidal quantum dots is well established [41].
Compared to the previously studied materials, the ordering
of the bands at the � point is different in HgTe: the �c

6
band has a lower energy than the �v

7,8 bands [42]. However,
the first empty band (i.e., the �v

8 band) is connected to both
the Xc

6 point and Lc
6 point, meaning that the character of the

band changes at finite k (see Ref. [30]). Consequently, for
sufficiently small spheres (large k), the electron ground state
must have predominantly a �c

6 character, which can indeed
be observed in Fig. 9. Our approach to calculate the electron
state assumes that the state is mainly stemming from the �c

6
band. This assumption is therefore only valid for R < 2.7 nm,
and hence we plot in Fig. 9 the curves dotted for R > 2.7 nm.
For small R, the current distribution is the same as for the
previously studied materials and the integrated orbital moment
is quenched in a similar fashion. This demonstrates the general
applicability of our approach to calculate spin-orbit correlated
currents in nanostructures. For large R, the electron ground
state is contained in the F = 3

2 subspace, which falls outside
the scope of this paper. We emphasize that we therefore
cannot correctly reproduce the bulk orbital moment (see
Table I).

B. Spherical shells

In the previous subsection, we found that the dominant
orbital current is zero at the center of the sphere and peaks at
roughly R/2. This suggests that removing material from the
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FIG. 9. (Color online) The radius dependence of the character
and integrated orbital moment μIC-BV of a HgTe sphere. The
calculation is only valid for R < 2.7 nm, hence the lines are dotted
for R > 2.7 nm.

center of the sphere would not affect the current distribution
in a significant way. We therefore investigate now a spherical
shell, where material is indeed removed from the center. The
spherical shell is also interesting from another perspective:
we found that the currents and moments of the spheres are
governed by a single geometrical parameter, the radius R of
the sphere. A spherical shell, however, has in principle two
independent geometrical parameters: its inner radius Rin and
outer radius Rout. The confining potential of such a spherical
shell is given by

V (r) =
{

0, Rin � r � Rout

∞, elsewhere. (52)

The spherical Neumann functions yl(r) do play a role now
since the origin is not involved in the wave function. Therefore,
ξ is nonzero and should follow from the boundary conditions.
Since the electron ground state predominantly originates from
conduction-band states, we use the approximate boundary
conditions 〈r,θ,φ| 1

2 ,+ 1
2 ; 1

2 ,0; k〉|r=Rin,r=Rout = 0, which leads
to the relations

k = π

Rout − Rin
, (53)

ξ = tan(kRout). (54)

The relation for the radial wave number k is similar to the
relation derived for the spherical quantum dots, only the radius
R is replaced by the shell thickness Rout − Rin. There is a
simple physical interpretation for this relation: the electron
will form a standing wave by reflecting between the inner
and outer spherical hard walls, and hence the wave number
is inversely proportional to the distance between these walls.
The modification to the wave number turns out to be the only
change compared to the spherical quantum dots: all quantities
are the same for the spherical shell after replacing R by
Rout − Rin. In other words, the confinement energy λ and
magnetic moment are parametrized by the radial wave number
k. The magnetic moment depends therefore one to one on the
confinement energy and it is not possible to tune the magnetic

165306-9



VAN BREE, SILOV, KOENRAAD, AND FLATTÉ PHYSICAL REVIEW B 90, 165306 (2014)
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Rout (continuous lines) and confinement energy λ (dotted lines).

moment and the confinement energy of the state separately.
We exemplify this in Fig. 10, where we show the integrated
orbital moment μIC-BV of InAs shells for various ratios of
Rin/Rout as function of the confinement energy: all curves fall
on top of each other. We will show in Sec. IV that it is possible
to independently tune the magnetic moment and confinement
energy if the symmetry of the nanostructure is lowered. Of
course, it is possible to tune the magnetic moment by changing
the shell thickness (see Fig. 10), which can either be done
structurally (e.g., in colloidal quantum dots) or electrically by
using gates.

In Fig. 11(a) we plot the spatial distribution of the dominant
current density 〈j〉BV for Rin/Rout = 1

2 . The current distribution
consists of an inner and outer current loop, propagating in
opposite directions and partially canceling each other. These
currents create oppositely oriented orbital moments, which
can also be seen directly from the expression for the dominant
integrated orbital moment μIC-BV:

μIC-BV = −μB

√
2

3

m0P0

π�2

Im{α − √
2β}

1 + |α|2 + |β|2 (Rout − Rin) ez,

(55)

which can be interpreted as the difference between the orbital
moment generated by the outer current and the inner current.
The degree of cancellation depends therefore on the shell
thickness, which shows again that the orbital moment for
spherical systems is uniquely determined by the radial wave
number k.

The current distribution of spherical shells is markedly
different from the current distribution of the spheres. Removal
of material from the center of the spheres has therefore
a nontrivial effect on the orbital currents; the number of
circulating currents and the direction in which they circulate
seems to be linked to the topology (genus) of the nanostructure.
This resembles the current distributions in the quantum spin
Hall effect [43] and this analogy will be the subject of further
study.
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FIG. 11. (Color online) (a) The spatial distribution of the nor-
malized magnitude of the ey component of 〈j〉BV of a spherical
shell. Due to the inner surface, an additional current loop is created,
circulating oppositely to the outer current loop. (b), (c) The magnetic
moment density of the most dominant orbital moment (c) and the
spin moment (b) of a spherical shell. It can clearly be observed
that μspin has an even spatial symmetry, whereas μIC-BV has an odd
spatial symmetry. All figures are xz cross sections, the white/black
circles mark the boundaries of the spherical shell, and we choose
Rin/Rout = 1

2 . Similar to the spheres, we have neglected the very
small x component of the spin moment density (see the discussion in
Sec. III A).

IV. CYLINDRICAL SYMMETRY

In the previous section, we found that the nanostruc-
tures with spherical symmetry are governed by a single
geometrical parameter. By reducing the symmetry of the
confining potential to cylindrical symmetry, we can investigate
if shape anisotropy can add a new geometrical handle on the
magnetic moment. Generally speaking, the k · p Hamiltonian
H can formally be decomposed in terms having respectively
cylindrical, cubic, and tetragonal symmetry [38]:

H = Hcyl + Hcub + Htet. (56)

Since we will be investigating cylindrically symmetric nanos-
tructures, we will use only the cylindrically symmetric part
Hcyl. Moreover, it has been shown [44] that Hcub is propor-
tional to γ3 − γ2, which is for most semiconductors a small
quantity compared to γ1 and γ2 (see Table I). Analogous to
Sec. III, this Hamiltonian will now be block diagonal in a
basis of eigenstates of Fz [20]:

H =
∑
Fz

HFz
(57)

since only Fz = LE,z + Jz, the projection of the total angular
momentum on the symmetry axis, remains quantized for
nanostructures with cylindrical symmetry. A convenient basis
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TABLE II. The cylindrically symmetrical Hamiltonian Hcyl represented in a cylindrical envelope basis [20,44]. We have used

the abbreviations ECB = �
2(k2+k2

z )
2m0

,EHH = Eg + �
2k2

2m0
(γ1 + γ2) + �

2k2
z

2m0
(γ1 − 2γ2) ,ELH = Eg + �

2k2

2m0
(γ1 − γ2) + �

2k2
z

2m0
(γ1 + 2γ2) ,ESO = Eg +

� + �
2(k2+k2

z )
2m0

γ1.

CB ↑ CB ↓ HH ↑ LH ↑ LH ↓ HH ↓ SO ↑ SO ↓

ECB 0 −i

√
1
2 kP0 i

√
2
3 kzP0 i

√
1
6 kP0 0 −i

√
1
3 kzP0 −i

√
1
3 kP0

0 ECB 0 −i

√
1
6 kP0 i

√
2
3 kzP0 i

√
1
2 kP0 −i

√
1
3 kP0 i

√
1
3 kzP0

i

√
1
2 kP0 0 −EHH

√
3 �

2kkz

m0
γ3

√
3 �

2k2

2m0

1
2 (γ2 + γ3) 0 −

√
3
2

�
2kkz

m0
γ3 −

√
3
2

�
2k2

2m0
(γ2 + γ3)

−i

√
2
3 kzP0 i

√
1
6 kP0

√
3 �

2kkz

m0
γ3 −ELH 0

√
3 �

2k2

2m0

1
2 (γ2 + γ3) −

√
1
2

�
2(k2−2k2

z )
m0

γ2

√
9
2

�
2kkz

m0
γ3

−i

√
1
6 kP0 −i

√
2
3 kzP0

√
3 �

2k2

2m0

1
2 (γ2 + γ3) 0 −ELH −√

3 �
2kkz

m0
γ3

√
9
2

�
2kkz

m0
γ3

√
1
2

�
2(k2−2k2

z )
m0

γ2

0 −i

√
1
2 kP0 0

√
3 �

2k2

2m0

1
2 (γ2 + γ3) −√

3 �
2kkz

m0
γ3 −EHH

√
3
2

�
2k2

2m0
(γ2 + γ3) −

√
3
2

�
2kkz

m0
γ3

i

√
1
3 kzP0 i

√
1
3 kP0 −

√
3
2

�
2kkz

m0
γ3 −

√
1
2

�
2(k2−2k2

z )
m0

γ2

√
9
2

�
2kkz

m0
γ3

√
3
2

�
2k2

2m0
(γ2 + γ3) −ESO 0

i

√
1
3 kP0 −i

√
1
3 kzP0 −

√
3
2

�
2k2

2m0
(γ2 + γ3)

√
9
2

�
2kkz

m0
γ3

√
1
2

�
2(k2−2k2

z )
m0

γ2 −
√

3
2

�
2kkz

m0
γ3 0 −ESO

are the product states

|Fz; J,Jz; k,kz〉 = |J,Jz〉|k,kz,LE,z = Fz − Jz〉, (58)

where |J,Jz〉 are Bloch functions, |k,kz,LE,z = Fz − Jz〉 the
envelope wave functions, k is the radial wave number, and kz

the wave number along the symmetry axis (which we choose to
be the z axis). The envelope wave function has the coordinate
representation

〈r,θ,z|k,kz,LE,z = Fz − Jz〉

= iLE,z

2π

{
JLE,z

(kr) + ξNLE,z
(kr)
}
eiLE,zθ eikzz, (59)

where Jl(r) is the lth-order Bessel function of the first
kind, Nl(r) is the lth-order Neumann function of the first
kind, and ξ a dimensionless parameter determined by the
boundary conditions. Using the transformation as outlined in
Ref. [20] we can represent Hcyl in the cylindrical envelope
basis. The resulting Hamiltonian is shown in Table II; the
basis of the Bloch functions can be found in Table III. We
would like to point out that, although the transformation of
Ref. [20] is correct, the cylindrical symmetry is not correctly
introduced in their Hamiltonian. We have therefore used the
correctly derived Hamiltonian of Ref. [44]. The Hamiltonian
of Ref. [20] and our Hamiltonian are identical in the spherical
approximation (γ2 = γ3 = γ23, where γ23 = 2

5γ2 + 3
5γ3). We

will show that only in the cylindrical approximation is it

TABLE III. The definition of the Bloch states (similar to
Refs. [20] or [44]).

CB↑ = |s〉 ↑ LH↑ = −
√

1
6 [|x〉 + i|y〉] ↓ +

√
2
3 |z〉 ↑

CB↓ = |s〉 ↓ LH↓ = +
√

1
6 [|x〉 − i|y〉] ↑ +

√
2
3 |z〉 ↓

HH↑ = −
√

1
2 [|x〉 + i|y〉] ↑ SO↑= −

√
1
3 [|x〉 + i|y〉] ↓ −

√
1
3 |z〉 ↑

HH↓ = +
√

1
2 [|x〉 − i|y〉] ↓ SO↓= −

√
1
3 [|x〉 − i|y〉] ↑ +

√
1
3 |z〉 ↓

possible to independently tune the confinement energy and
magnetic moment.

A. Disks with hard-wall boundaries

The confining potential of a disk with radius R and height
H with hard-wall boundaries is given by

V (r,z) =
{

0, r � R and |z| � H/2
∞, elsewhere. (60)

The envelope wave function needs to be normalizable at
the center of the disk, hence only Bessel functions Jl(kr)
contribute to the envelope wave function (i.e., ξ = 0). Further-
more, the traveling wave eikzz in the z direction will become
a standing wave. Since we assume that the electron ground
state predominantly originates from conduction-band states,
we choose the approximate boundary condition

〈r,θ,z|k,kz,0〉
r=R,z=± H

2
= 0 (61)

from which the relations k = ρ0,1

R
and kz = π

H
follow (where

ρl,m denotes the mth zero of the lth-order Bessel function). The
envelope spinor for the electron ground state with Fz = + 1

2
becomes then

〈r,θ,z|�〉 = N

2π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1J0 (kr) cos(kzz)
−v2J1 (kr) sin(kzz)
iv3J1 (kr) cos(kzz)e−iθ

iv4J0 (kr) sin(kzz)
iv5J1 (kr) cos(kzz)e+iθ

−iv6J2 (kr) sin(kzz)e+2iθ

iv7J0 (kr) sin(kzz)
iv8J1 (kr) cos(kzz)e+iθ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CB↑
CB↓
HH↑
LH↑
LH↓
HH↓
SO↑
SO↓

,

where the coefficients vi indicate the amount of intermixing of
different Bloch states (comparable to α and β of the spheres),
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and where N is a normalization constant:

|N |2 = 8πρ2
0,1

HR2J1(ρ0,1)2
(∑8

i=1 |vi |2ρ2
0,1 − 4|v6|2

) . (62)

We will first investigate the character of the ground state, which in general depends both on the radius and height of the disk. As
this character depends on the coefficients vi , we need to diagonalize Hcyl to find their analytical expressions. Unfortunately, these
expressions are rather cumbersome, and it proves more insightful to analyze the coefficients in the quantum well limit (QW), for
which k = 0:

v
QW
1 = 1, v

QW
2 = 0, v

QW
3 = 0, v

QW
5 = 0, v

QW
6 = 0, v

QW
8 = 0, (63)

v
QW
4 =

i

√
2
3kzP0

[
�

2k2
z

2m0
(γ1 − 2γ2) + (Eg + � + λ)

]
[

�2k2
z

2m0
(γ1 − 2γ2) + (Eg + � + λ)

][
�2k2

z

2m0
(γ1 + 4γ2) + (Eg + λ)

]− 2 �2k2
z

2m0
γ2�

, (64)

v
QW
7 =

i

√
1
3kzP0

[
�

2k2
z

2m0
(γ1 − 2γ2) + (Eg + λ)

]
[

�2k2
z

2m0
(γ1 − 2γ2) + (Eg + � + λ)

][
�2k2

z

2m0
(γ1 + 4γ2) + (Eg + λ)

]− 2 �2k2
z

2m0
γ2�

(65)

and in the nanowire limit (NW), for which kz = 0:

vNW
1 = 1, vNW

2 = 0, vNW
4 = 0, vNW

6 = 0, vNW
7 = 0, (66)

vNW
3 = i

√
2kP0[K1 + (Eg + � + λ)][K2 + 2(Eg + λ)]

[K1 + (Eg + � + λ)][K2 + 2(Eg + λ)][K3 + 2(Eg + λ)] − 8 �2k2

2m0
γ2�
[

�2k2

2m0
(γ1 + γ2) − �2k2

2m0

3(γ2+γ3)2

4γ2
+ (Eg + λ)

] ,
(67)

vNW
5 =

i

√
2
3kP0[K1 + (Eg + � + λ)][K2 + 2(Eg + λ)]

[K1 + (Eg + � + λ)][K2 + 2(Eg + λ)][K3 + 2(Eg + λ)] − 8 �2k2

2m0
γ2�
[

�2k2

2m0
(γ1 + γ2) − �2k2

2m0

3(γ2+γ3)2

4γ2
+ (Eg + λ)

] ,
(68)

vNW
8 =

i

√
4
3kP0[K1 + (Eg + λ)][K2 + 2(Eg + λ)]

[K1 + (Eg + � + λ)][K2 + 2(Eg + λ)][K3 + 2(Eg + λ)] − 8 �2k2

2m0
γ2�
[

�2k2

2m0
(γ1 + γ2) − �2k2

2m0

3(γ2+γ3)2

4γ2
+ (Eg + λ)

] ,
(69)

where λ is the confinement energy following from one of the
roots of |Hcyl − λI | = 0, and where

K1 = �
2k2

2m0
(γ1 − 2γ2), (70)

K2 = �
2k2

2m0
(2γ1 − γ2 − 3γ3), (71)

K3 = �
2k2

2m0
(2γ1 + 5γ2 + 3γ3). (72)

It is clear that only very specific valence bands are mixing into
the electron ground state for quantum wells and nanowires,
which can be explained as follows. The ground state has only
a finite envelope momentum associated with the directions in
which the state is confined (at zero temperature). For example,
in a quantum well there is only an envelope momentum in
the z direction (kz �= 0) since there will be no motion in the
plane (k = 0). In a k · p model, the envelope momentum k
is coupled to the atomic orbitals of the crystal p. This means
that only valence-band Bloch states with atomic orbitals which
are oriented in the confined directions will participate in the

ground state. Thus, for the quantum well, only valence-band
Bloch states with atomic orbitals |z〉 will contribute, whereas
for the nanowire only the atomic orbital states |x〉 or |y〉 are
relevant (see Table III). Since we are examining the Fz = + 1

2
ground state, only the spin-↑ part of the valence-band Bloch
state can participate. Hence, only {LH↑ , SO↑} (or v

QW
4,7 ) mix

into the ground state of the quantum well, whereas only {HH↑,

LH↓ , SO↓} (or vNW
3,5,8) are relevant for the nanowire.

In Figs. 12 and 13 we show the height (radius) dependence
of the character of an InAs quantum well and nanowire. The
character behaves qualitatively the same as for the spheres:
the intermixing of valence-band states peaks at a certain
height (or radius) and the conduction-band contribution has
a minimum of ∼65%. The reason for this behavior is also
the same and can be directly observed in the expressions
for the vi : there is a competition between the coupling term
(kP0 or kzP0) and the free kinetic energy (∝k2 or k2

z ). We
would like to point out that the exact dependence of the
coefficients on the height (or radius) is determined by the
free kinetic energies associated with the confined direction.
In particular, coefficients v

QW
4,7 depend only on combinations

of γ1 and γ2 which represent the effective hole masses along

165306-12



GEOMETRIC AND COMPOSITIONAL INFLUENCES ON . . . PHYSICAL REVIEW B 90, 165306 (2014)

v1

v4

v7
λ

H

R      ∞

10−3

10−2

10−1

100

 1  10  100
10−2

10−1

100

101

C
ha

ra
ct

er

C
on

fin
em

en
t e

ne
rg

y 
λ 

[e
V

]

Height H [nm]

FIG. 12. (Color online) The height dependence of the character
and confinement energy λ of an InAs quantum well, where only v4,7

intermix, in the cylindrical approximation (continuous lines) and in
the spherical approximation (dotted lines).

the z direction. However, the coefficients vNW
3,5,8 for a nanowire

also depend on γ3, as the combinations of γ ’s involve the
in-plane effective hole masses. When using the spherical
approximation, these differences disappear and all coefficients
have the same functional dependence on radius or height,
as can be seen by comparing the dotted lines of Figs. 12
and 13.

In Fig. 14, we show the radius and height dependence of
the character of a finite InAs disk. As expected, the electron
ground state Fz = + 1

2 is always dominated (�65%) by the
CB↑ states. The radius and height dependence of coefficients
v4,7 is similar to coefficients v3,5,8, only the roles of radius
and height are interchanged. We therefore discuss only the
dependence of coefficients v3,5,8. Of course, only coefficients
v3,5,8 play a role if the height is very large since we are then
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FIG. 13. (Color online) The radius dependence of the character
and confinement energy λ of an InAs nanowire, where only v3,5,8

intermix, in the cylindrical approximation (continuous lines) and in
the spherical approximation (dotted lines).

approaching the nanowire limit. Moreover, the nonmonotonic
dependence of these coefficients on the radius follows the
explanation of the previous paragraph. To understand why they
have only a significant weight in a triangular region of the RH

space, we need to analyze their less-intuitive dependence on
the height. To first order, we can use the analytical expressions
for vNW

3,5,8, recognizing that the confinement energy λ depends
in general on both the radius and height. Indeed, in the limit
of large radius and height, λ becomes

lim
R,H→∞

λ = Eg + 2
3�

Eg(Eg + �)

(
k2 + k2

z

)
P 2

0 . (73)

Inserting this expression for λ into vNW
3,5,8, we see that

v3,5,8 ∼ 1/k2
z , and will thus decrease monotonically when

the height gets smaller. This effect is only significant when
the confinement energy (∝k2

z ) is comparable to the free
kinetic energies (∝k2), i.e., when the H ∼ R. When H �
R, the confinement energy has quenched the coefficients
v3,5,8 completely, which explains the insignificance of these
coefficients in the triangular region of the RH space. The same
is true for coefficients v4,7, though the role of radius and height
are interchanged. As a result, an imaginary R = H line clearly
separates in Fig. 14 the sizes where either the coefficients v3,5,8

or v4,7 play a significant role.
We find that v2 is always zero, even though there are

second-order couplings between CB↓ and CB↑ (see Table II).
It turns out that these couplings are canceling each other in the
cylindrical approximation. We expect that this is no longer true
when cubic terms are included in the Hamiltonian. Coefficient
v6, however, still has a finite weight due to third-order
couplings since the HH↓ Bloch state can only couple to the
CB↑ Bloch state via two intermediate valence-band Bloch
states. This explains why v6 has a (extremely) small weight in
a very limited region of the RH space, as it depends on the
overlap of coefficients v3,5,8 and v4,7. Interestingly, we find
that v6 ∝ (γ2 − γ3) and consequently v6 = 0 in the spherical
approximation. Due to the extremely small weight, we set
v6 = 0 to simplify the analytical expressions.

The itinerant BV related current density 〈j〉BV of the
electron ground state can be expressed in terms of coefficients
vi :

〈j〉BV = − e|N |2P0

2
√

6π2�
[J0(kr)J1(kr) cos2(kzz)v1

× Im{
√

3v3 + v5 −
√

2v8}]eθ . (74)

The current is flowing in the eθ direction and the radial
distribution is governed by the product of the conduction- and
valence-band envelope wave functions, i.e., J0(kr)J1(kr). This
resembles again a current loop [see Fig. 15(a)] peaking at about
R/2 and z = 0. The momentum matrix elements associated
with the eθ direction can be written as 〈uj | 1

ρ
i
�
LB,z|ui〉. The

current depends indeed on coefficients v3,5,8, which represent
valence-band Bloch states carrying an orbital momentum
LB,z = ±1. In the limit of large radius and height, we find that
the particular combination of these coefficients is proportional
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(a) (c) (e) (g)

(h)(f)(d)(b)

FIG. 14. (Color online) The height and radius dependence of the character of the electron ground state of an InAs disk. The white lines
are contours constant |N |2|vi |2. The electron ground state Fz = + 1

2 is dominated by the v1 (CB↑) state; note that (a) has a different color scale
than the other plots. In the quantum wire limit (large H ) only v3,5,8 (HH↑, LH↓, SO↓) mix into the ground state, while in the quantum well
limit (large R) only v4,7 (LH↑, SO↑) mix into the ground state. These coefficients are bounded by an imaginary R = H line through their
dependence on the confinement energy (see text). The contribution of v2 (CB↓) is absent and of v6 (HH↓) negligible (enhanced by 105 for
visibility).

(a) (c) (e) (g)

(h)(f)(d)(b)

FIG. 15. (Color online) (a), (b) The spatial distribution of the normalized magnitude of the ey component of 〈j〉BV (a) and 〈j〉EV (b) of a
disk, with v6 = 0. The current density peaks at roughly R/2 and z = 0 and resembles a current loop in the plane of the disk. (c) The height
and radius dependence of the ratio between the peak current densities 〈j〉BV

max and 〈j〉EV
max for an InAs disk. The color scale is logarithmic and

the leftmost contour indicates a ratio of 10. As long as R � 1 nm, 〈j〉BV � 〈j〉EV. (d)–(h) The height and radius dependence of the different
integrated orbital momenta (e)–(h) and the integrated spin moment (d) for an InAs disk, all in units of Bohr magnetons. The color scale is
logarithmic and the white lines are contours of constant moment with a power of 10. The dashed black lines in (e) are contours of constant
confinement energy.
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to the spin-orbit coupling:

lim
R,H→∞

Im{
√

3v3 + v5 −
√

2v8} (75)

=
√

3

2

kP0

Eg + λ
−
√

1

6

kP0

Eg + λ
−
√

2

3

kP0

Eg + � + λ
(76)

=
√

2

3
kP0

�

(Eg + λ)(Eg + � + λ)
, (77)

which shows explicitly the spin-orbit correlated nature of the
current. It also shows explicitly the cancellation mechanism,
as discussed for the spheres: coefficient v3 and coefficients
v5,8 create oppositely circulating currents since they have,
respectively, LB,z = +1 and −1. The degree of cancellation
depends on the spin-orbit splitting �, as this tunes the presence
of the SO↓ (v8) Bloch state. The proportionality to k suggests
that the current would be quenched in the quantum well limit.
We will show later on that this does not mean that the orbital
moment μIC-BV associated with this current is quenched in
quantum wells. Furthermore, we point out that quenching of
〈j〉BV in the quantum well limit can only happen in a perfect
crystal at a temperature of 0 K. In practice, either the finite
temperature (the de Broglie wavelength) or dopants (the Bohr
radius) will lead to a finite radial wave number and therefore
to a finite current.

The itinerant EV related current density 〈j〉EV can be
more generally calculated using the general envelope state
|k,kz,LE,z〉:

〈j〉EV
|k,kz,LE,z〉 = e�

4π2rm0
LE,zJLE,z

(kr)2eθ , (78)

where we have left out the ez component since for the disk
the traveling plane wave eikzz is replaced by a standing wave,
which cannot carry a current. Once more, it is clear the 〈j〉EV

flows in the eθ direction and is generated by envelope wave
functions having a finite LE,z, meaning that the dominant CB↑
Bloch state will not contribute. The itinerant EV related current
density 〈j〉EV of the ground state can also be expressed in terms
of coefficients vi :

〈j〉EV = − e|N |2�
4π2rm0

[J1(kr)2 cos2(kzz){|v3|2 − |v5|2 − |v8|2}]eθ .

(79)

It is clear that this current has the same spatial symmetry as
〈j〉BV and resembles a current loop. The radial distribution is
slightly different, being proportional to J1(kr)2, as can also be
seen in Fig. 15(b). It is straightforward to show that 〈j〉EV is
also proportional to the spin-orbit coupling. The Bloch velocity
related current dominates the envelope velocity related current,
as can be seen from Fig. 15(c). For realistic sizes (i.e., R � 1
nm), the peak current density 〈j〉BV

max is more than 10 times
larger than 〈j〉EV

max.
Now that the currents are known, we can analyze the

magnetic moments. Since the spatial symmetries of the orbital
moments and spin moment are similar to the case of the
spheres, we do not discuss them in detail. Instead, we will focus
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FIG. 16. (Color online) The integrated orbital moment μIC-BV

of an InAs quantum well/nanowire as function of height/radius
(continuous lines) and confinement energy (dotted lines).

on the integrated moments; the integrated orbital moments are

μIC-BV = −μB

√
2

3

m0P0R

�2ρ0,1

v1Im{√3v3 + v5 − √
2v8}∑8

i=1 |vi |2
ez,

(80)

μLC-BV = μB

|v3|2− 1
3 Im{v5 − √

2v8}2+ 1
3 Im{v4 + √

2v7}2∑8
i=1 |vi |2

ez,

(81)

μIC-EV = −μB

|v3|2 − |v5|2 − |v8|2∑8
i=1 |vi |2

ez, (82)

μLC-EV = −μB

√
2

3

P0ρ0,1

R

v1Im
{√

3
Eg

v3 + 1
Eg

v5 −
√

2
Eg+�

v8
}

∑8
i=1 |vi |2

ez,

(83)

while the integrated spin moment becomes

μspin = μB

[
1 − 2

1
3 Im{v4 + √

2v7}2 + 1
3 Im{√2v5 + v8}2∑8

i=1 |vi |2

]
ez.

(84)

As expected for the Fz = + 1
2 ground state, the integrated

magnetic moments are oriented along the ez direction. In
Figs. 15(d)–15(h) we plot the radius and height dependence of
these magnetic moments for an InAs disk.

Similar to the case of the spheres, μIC-BV dominates over
all other orbital moments within the range of the validity of the
envelope-function approximation. It is interesting to examine
the behavior of μIC-BV in several limiting cases. In the limit
of large radius and height, μIC-BV becomes again the Roth
formula [2], and the disk behaves as a bulk material. In the
limit of large height, we can examine the behavior of μIC-BV
in nanowires. In Fig. 16, we show the radius dependence of
μIC-BV of an InAs nanowire. The origin of this dependence
is the same as we have found for the spheres, and can be
explained using the simple current loop: the nonmonotonic
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radius dependence of the integrated current is multiplied by
R2. This makes the orbital moment constant at large radius,
and depends on R4 for small radius. In the limit of large radius,
we can examine the behavior of μIC-BV in quantum wells. Since
μIC-BV originates from 〈j〉BV, this moment is proportional to
coefficients v3,5,8. As was pointed out earlier, these coefficients
are proportional to k in the limit of large radius, so one might
expect μIC-BV to quench in the quantum well limit. However,
the orbital moment is proportional to r × j. Since r ∼ 1/k,
the lever arm r cancels the k dependence of the current j.
Therefore, μIC-BV remains nonzero in the quantum well limit.
We show the height dependence of μIC-BV for an InAs quantum
well in Fig. 16. The quenching mechanism is slightly different
from that of the nanowires: the height enters μIC-BV mainly
through the confinement energy. To show these differences
more clearly, we can investigate the analytical expressions for
μIC-BV in nanowires (quantum wells), in the limit of large
radius (height):

μNW
IC-BV

μRoth
= 1 −

(
2(γ1 + γ2)

Eg

+ 2m0P
2
0

�2 − γ1�

Eg(Eg + �)

+ 2
m0P

2
0

�2

6
(
Eg + 2

3�
)2

E2
g(Eg + �)2

)
�

2k2

2m0
+ O(k3), (85)

μ
QW
IC-BV

μRoth
= 1 −

(
2(γ1 − 2γ2 + 3γ3)

Eg

+ 2m0P
2
0

�2 − γ1�

Eg(Eg + �)

+ 2
m0P

2
0

�2

6
(
Eg + 2

3�
)2

E2
g(Eg + �)2

)
�

2k2
z

2m0
+ O
(
k3
z

)
. (86)

Notice that the functional dependence of μIC-BV is the same
for the nanowire and quantum well, except for the particular
combination of γ ’s that appears. More precisely, only the
quantum well contains contributions from γ3, making it prone
to changes when going from the cylindrical to the spherical
approximation. This is indeed observed for the InAs quantum
well in Fig. 16. In the spherical approximation, we find the
orbital moment of nanowires and quantum wells to depend
similarly on k and kz. This becomes clear in Fig. 16 when
the orbital moment is plotted against the confinement energy:
in the spherical approximation, the curves of the quantum
well and nanowire fall on top of each other. This shows
that the orbital moment and confinement energy cannot be
tuned independently. In fact, we have checked that both
are parametrized by the quantity k2 + k2

z . This behavior
is analogous to what has been found for the spherically
symmetric nanostructures.

However, when using the cylindrical approximation, the
orbital moments of the quantum well and nanowire do not
depend in the same way on the confinement energy: in
Fig. 16, we see that the confinement energy of a quantum
well and nanowire can be the same, yet the orbital moments
are different. Indeed, we also find that for finite disks it is
possible to tune independently the confinement energy and
orbital moment, if we use the cylindrical approximation. This
is exemplified in Fig. 15(e), where besides the white lines
indicating contours of constant orbital moment, dashed black
lines indicate contours of constant confinement energies. It

TABLE IV. The different combinations of the Bloch orbital
moment LB,z and envelope orbital moment LE,z for a state having
Fz = + 1

2 .

vi Jz LB,z,sz LE,z

v3 + 3
2 +1,+ 1

2 −1

v4,7 + 1
2

(+1,− 1
2 ),(0,+ 1

2

)
0

v5,8 − 1
2

(−1,+ 1
2

)
,
(
0,− 1

2

) +1

v6 − 3
2 −1,− 1

2 +2

can readily be seen that the two sets of contour lines do
not fully overlap, meaning that the confinement energy is
changing along a contour line of constant orbital moment.
This is distinctively different from nanostructures having
spherical symmetry. A cylindrically symmetric nanostructure
allows therefore for more versatility in engineering the orbital
moment. For example, it is possible to engineer disks with
the same confinement energy, yet different orbital momenta.
This different behavior arises from the different symmetry
of band structure of the crystal and not from the shape
of the nanostructure, as we have observed that disks in
the spherical approximation are parametrized by k2 + k2

z .
The intermixing depends through the confinement energy
and the free kinetic energies on the dispersion relation and
therefore on the symmetry of the band structure.

The localized orbital moment μLC-BV is proportional to
the Bloch orbital moment 〈ui |LB|uj 〉. One can recognize in
Eq. (81) the projection of the orbital Bloch moment +1 in front
of coefficient v3 (HH↑), and ± 1

3 in front of coefficients v5,8

(LH↑, SO↓) and coefficients v4,7 (LH↓, SO↑). In contrast,
μIC-EV is proportional to the envelope orbital moment since
this current originates from 〈j〉EV. The numerical factors in
front of the coefficients in Eq. (82) are now given by LE,z of
the corresponding coefficient. Coefficients v4,7 play therefore
no role since the corresponding envelope wave functions have
LE,z = 0. The projection of the Bloch and envelope orbital
momenta are related via

Fz = LE,z + LB,z + sz. (87)

In Table IV, we have tabulated the different possible combi-
nations of the Bloch and envelope orbital momenta for the
electron ground state of a disk having Fz = + 1

2 . We find
that LE,z = −LB,z for coefficients v3,5,8. These coefficients
dominate the valence-band contribution to the electron ground
state for H > R (see Fig. 14), so that μLC-BV ≈ −μIC-EV
for H > R. The same (near) cancellation in the total orbital
moment was found in the spheres. For H < R, however, the
coefficients v4,7 are nonzero so that the cancellation is not so
complete. This is different from the spheres and shows again
how radius and height have a different influence on the orbital
moments in disks.

The localized orbital moment μLC-EV depends via the
dipole matrix elements on the momentum matrix elements
[see Eq. (17)]. It therefore depends on the same coefficients
as μIC-BV, although reduced by the band-edge energies of
the corresponding Bloch states. The main difference between
these two moments arises from the different prefactors.
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For μIC-BV, the prefactor reflects the lever arm, which is
proportional to R, while for μLC-EV it reflects the gradient
of the envelope wave function, which is proportional to 1/R

when μLC-EV is oriented along ez. This explains why μLC-EV
becomes larger when the radius is decreased: the envelope
velocity will steadily increase. Note that μLC-EV becomes
constant at small radius: coefficients v3,5,8 are proportional
to 1/k due to the free kinetic energy, while the prefactor
depends on k, which together makes μLC-EV constant at small
radius. By decreasing the height, μLC-EV is quenched via the
dependence of coefficients v3,5,8 on the confinement energy.
This is only effective when the height is substantially affecting
the confinement energy, i.e., for H < R. Although for small
radius μLC-EV can become larger than μIC-BV, the validity of the
envelope-function approximation starts to break down. This is
particularly true for the envelope velocity related quantities,
which depend on the gradient of the envelope wave functions.

Finally, we point out that the spin moment is almost constant
at one Bohr magneton [see Fig. 15(d)]. The reason is the
same as was found for the spheres: although there is a sizable
intermixing of valence-band states, the effect of different bands
on the spin moment cancel to a large degree each other out.
From Fig. 15(d), we observe that the radius dependence of the
spin moment is different from the height dependence, i.e., the
(small) corrections are different for a nanowire and quantum
well. This shows once more that the radius and height have a
different influence on the disks.

B. Disks with soft boundaries

To show that the qualitative picture of the spin-orbit
correlated currents and resulting moments does not depend on
the choice of hard-wall boundaries, we will now investigate
cylindrically symmetric nanostructures with soft boundaries.
Such boundaries can arise when quantum dots are electrostat-
ically defined using gates on quantum wells [see Fig. 17(a)].
The confining potential of such a gate-defined quantum dot in
a quantum well having height H is given by

V (r,z) =
{

1
2m0ω

2r2, |z| � 1
2H

∞, |z| > 1
2H

(88)

where we take a hard-wall boundary in the z direction and a
harmonic potential in the lateral direction having an oscillator
frequency ω. Soft boundaries also arise in gate-defined
quantum dot in a nanowires [see Fig. 17(b)], of which the
confining potential can be described as

V (r,z) =
{

1
2m0ω

2z2, r � R

∞, r > R
(89)

where R is the radius of the nanowire, and we take a hard-wall
boundary at the nanowire surface and a harmonic potential in
the axial direction.

Unfortunately, the Schrödinger equation cannot be solved
analytically for either of these two confinement potentials
when taking all eight bands into account. However, we can
expand the electron ground state into free cylindrical waves
�free

Fz,k(r):

�(r) =
∫

Vk

c(k)�free
+1/2,k(r)d3k, (90)

(a) (b)

(c) (d)

FIG. 17. (Color online) (a) Gates (red) define, by electrostatic
means, a quantum dot in a quantum well (blue). We take hard-wall
confinement in the z direction and a harmonic potential in the lateral
direction. (b) Gates (red) define, by electrostatic means, a quantum
dot in a nanowire (transparent). We take hard-wall confinement at the
nanowire surface and a harmonic confinement potential in the axial
direction. (c) The normalized magnitude of 〈j〉BV in the ey direction
of an InAs quantum well with H = 10 nm and Lrad

har = 10 nm [45].
(d) The normalized magnitude of 〈j〉BV in the ey direction of an InAs
nanowire with R = 40 nm and Lax

har = 10 nm [46]. The continuous
white lines indicate hard-wall boundaries, the dashed ones indicate
the harmonic confinement length.

where c(k) are expansion coefficients, and k = (k,kz) is the
wave vector of the free cylindrical wave. We have limited
the expansion to Fz = + 1

2 states since we are only interested
in the electron ground state of the quantum dots. A free
cylindrical wave �free

Fz,k is straightforwardly described in terms
of the product states |Fz; J,Jz; k,kz〉 (see Sec. IV):

�free
Fz,k(r) =

∑
J,Jz

vJ,Jz
(k)〈r|Fz; J,Jz; k,kz〉, (91)

where coefficients vJ,Jz
(k) follow from diagonalizing the

Hamiltonian. These coefficients can one-to-one be identified
with the (intermixing) coefficients vi of the disks.

Based on the analysis of the spheres and disks, we know that
the dominant contribution to the electron ground state comes
from the conduction band. We can therefore approximate
the expansion coefficients using the envelope wave functions
of a calculation involving only a single (conduction) band
�single(r):

c(k) ≈
∫

V

�single(r)�free, single
+1/2,k (r)d3r, (92)

where the free cylindrical wave of a single (conduction) band
is given by

�
free, single
+1/2,k (r) = 〈r∣∣Fz = + 1

2 ; J = 1
2 ,Jz = + 1

2 ; k,kz

〉
. (93)

We take for the envelope wave functions involving only the
conduction band the solutions of Ref. [47]; for a quantum dot
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FIG. 18. (Color online) The integrated orbital moment μIC-BV as
a function of the harmonic confinement length Lrad

har for gate-defined
quantum dots in quantum wells (continuous lines) and as a function
of radius R for disk (dotted lines), with H = 10 nm.

in a quantum well this is

�
single
QW (r) = Ne−(r/2Lrad

har)
2

cos

(
π

z

H

)
, (94)

where Lrad
har = √

�/2m0ω is the harmonic confinement length in
the lateral direction, and N a normalization constant. Similarly,
for a quantum dot in a nanowire we have

�
single
NW (r) = Ne−(z/

√
2Lax

har)
2
J0

(
ρ0,1

r

R

)
, (95)

where Lax
har = √

�/m0ω is the harmonic confinement length
in the axial direction. Using these single-band envelope
wave functions, we find an approximation for �(r), of
which the accuracy depends on the amount of intermixing
of valence-band states. Although it is possible to solve this
problem analytically, for practical reasons we used only a
limited number of free cylindrical waves in the expansion
and calculated numerically vJ,Jz

(k) for each wave. This
numerical approximation converges when we use ∼50–100
free cylindrical waves.

Now that the electron ground state is determined, we
can use the techniques outlined in Sec. II A to calculate the
spin-orbit correlated currents. In Fig. 17(c), we show 〈j〉BV

for a realistic gate-defined quantum dot in an InAs quantum
well [45]. This current distribution is very similar to the one
found for disks [see Fig. 15(a)]; the only difference is that
the current is more smeared out in the lateral direction. In
Fig. 18, we show the dependence of the integrated moment
μIC-BV on Lrad

har for gate-defined quantum dots in quantum
wells with H = 10 nm. In the same graph, we show the radius
dependence of disks having H = 10 nm, so that we can directly
observe the difference between hard-wall and soft boundaries.
As expected, the boundaries have no influence in the limit
of large Lrad

har or R. When decreasing the size of the quantum
dots, the quenching starts earlier for hard-wall boundaries than
for the soft boundaries. This is easily understood by comparing
the current distributions; the current is more smeared out in the
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FIG. 19. (Color online) The integrated orbital moment μIC-BV as
a function of the harmonic confinement length Lax

har for gate-defined
quantum dots in nanowires (continuous lines) and as a function of
height H for disks (dotted lines), with R = 40 nm [46,48].

lateral direction for the gate-defined quantum dots, meaning
that they have a larger orbital moment for the same (effective)
radius. At very small sizes, the rate of quenching is the same
for hard-wall and soft boundaries. We therefore conclude that
the net effect of the soft boundaries in the lateral direction is
to merely change the onset of quenching, yet the underlying
mechanisms remain the same.

The current distribution for a gate-defined quantum dot in
an InAs nanowire [46] is shown in Fig. 17(d). In this case, the
current is smeared out in the axial direction, when comparing it
to the disks [see Fig. 15(a)]. The dependence of the orbital mo-
ment μIC-BV on Lax

har is plotted in Fig. 19, along with the height
dependence of the corresponding disks. Although the orbital
moment of hard-wall and soft boundaries is again the same for
large quantum dots, the rate of quenching at small sizes is dif-
ferent: for the disks, the rate is proportional to H 4, while for the
gate-defined quantum dots the rate is proportional to Lax

har. We
do not understand this difference since the current distributions
are qualitatively the same. It could result from the approxi-
mation scheme we have used to retrieve the electron ground
state. To investigate such unwanted effects, a direct numerical
calculation of the electron ground state would be needed.

C. Rings

In Sec. IV A, we found that lowering the symmetry from
spherical to cylindrical, one more independent handle on the
magnetic moment is introduced. Analogous to the analysis
of spherical shells, it proves interesting to see what effect
the topology has on cylindrically symmetric nanostructures.
Moreover, the removal of material from the center of the
spheres leads to new currents, and such effects might now be
expected for cylindrical nanostructures too. We will therefore
analyze a ring, with inner radius Rin, outer radius Rout, and
height H , of which the confining potential is given by

V (r,z) =
{

0, Rin � r � Rout and |z| � H/2
∞, elsewhere. (96)
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(a) (b)

FIG. 20. (Color online) (a) The xz cross section of the spatial
distribution of the normalized magnitude of the ey component of
〈j〉BV of a ring. Similar to the spherical shells, there are two oppositely
circulating current loops. For the plot we choose Rin/Rout = 1

3 and set
v6 = 0. (b) The dependence of μIC-BV (in μB ) on the ring thickness
Rout − Rin and outer radius Rout, for an InAs ring with H = 100 nm.
Similar to the spherical shells, the orbital moment depends only on
the ring thickness, as can be seen from the white contour lines. We
have set v6 = 0 to avoid numerical artifacts in the calculation.

The Neumann functions NLE,z
(r) do play a role now since

the origin is not involved in the wave function (see Sec. IV).
The parameter ξ is therefore nonzero and should follow
from the boundary conditions. Since the electron ground state
predominantly originates from conduction-band states, we
choose the approximate boundary condition

〈r,θ,z|k,kz,0〉
r=Rin,r=Rout,z=± H

2
= 0. (97)

This condition leads to the system of equations

J0(kRin) + ξN0(kRin) = 0,
(98)

J0(kRout) + ξN0(kRout) = 0,

which determine (ξ,k) for a given (Rin,Rout). Although this
system of equations is not generally analytically solvable, it
can be inferred that both ξ and kRout depend only on the ratio
Rin/Rout. This can also be seen when analyzing the asymptotic
limit of the equations, which results in approximate solutions

k ≈ π

Rout − Rin
, (99)

ξ ≈ tan

(
kRout + π

4

)
. (100)

These approximate relations resemble the ones found for the
spherical shells. In Fig. 20(a), we plot the current distribution
of a ring with Rin/Rout = 1

3 . Analogous to the spherical shells,
the existence of the inner surface leads to an additional
oppositely circulating current. This shows once more that the
topology of the nanostructure has a profound influence on the
orbital current distribution. Contrary to the spherical shells,
we find that these two current loops carry an equal amount of
current, so that, irrespective of the size, the integrated current

is zero. The orbital moments generated by each of the currents
will partially cancel, the degree of cancellation depending
on the ring thickness. This result was to be expected since
the radial wave number is determined by the ring thickness
Rout − Rin, and the orbital moment of a disk depends on
R/ρ0,1 = 1/k. The orbital moment can therefore only be tuned
either via the thickness or the height of the ring. It seems,
therefore, that changing the topology of the nanostructure does
not generate additional handles on the orbital moment, while
changing the spatial symmetry does have this effect.

To be complete, the above reasoning only holds as long
as the approximate solution is valid; in general, k might
not depend only on the ring thickness. We have therefore
computed numerically the solution of the boundary conditions,
and used them to numerically calculate the radius dependence
of the most important integrated orbital moment μIC-BV [see
Fig. 20(b)]. It can readily be seen that this orbital moment
depends only on the ring thickness. Only when Rin approaches
zero, Rout starts to have an influence too. These small values
of Rin correspond to an inner region comparable to the unit
cell of the crystal, and the validity of the envelope-function
approximation is questionable. Finally, we note that having a
finite barrier will also lead to substantial changes at small Rin:
tunneling through the inner region will reduce the strength of
the inner current loop and decreases the radius of the outer
current loop, both leading to a reduction of the degree of
cancellation of the orbital moments.

V. CONCLUSIONS

We have found that the origin of spin-correlated currents of
different nanostructures is related to the intermixing of valence
band states into the electron ground state. Irrespective of the
geometrical symmetry (spherical versus cylindrical), type of
boundaries (hard wall versus soft), and material, we have found
that the dominant current circulates within the nanostructure,
peaking roughly halfway between the center and edge of the
nanostructure. This distribution can be regarded as a simple
current loop, which generates the orbital moment. By changing
the size of the nanostructure, both the amount of current
(intermixing of valence states) and the lever arm are changed,
leading to quenching of the orbital moment for small sizes.
For spherically symmetric nanostructures, we have found that
the orbital moment and confinement energy are parametrized
by a single geometrical parameter. By lowering the symmetry,
such as for cylindrically symmetric nanostructures, we have
found that these two quantities can be independently tuned; the
radius and height have different influences on disks. Although
changing the topology of nanostructures can introduce an
additional geometrical handle on the orbital moment, we
have observed that the orbital moment and confinement
energy are then parametrized by a combination of geometrical
parameters. Such handles can be interesting in relation to
tuning the orbital moment, i.e., manipulating the g tensor,
for active manipulation of the electron spin.
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