We have studied the size dependence of the exciton g-factor in self-assembled
InAs/InP quantum dots. Photoluminescence measurements on a large ensemble of
these dots indicate a multimodal height distribution. Cross-sectional Scanning
Tunneling Microscopy measurements have been performed and support the
interpretation of the macro photoluminescence spectra. More than 160 individual
quantum dots have systematically been investigated by analyzing single dot
magneto-luminescence between 1200nm and 1600 nm. We demonstrate a strong
dependence of the exciton g-factor on the height and diameter of the quantum
dots, which eventually gives rise to a sign change of the g-factor. The
observed correlation between exciton g-factor and the size of the dots is in
good agreement with calculations. Moreover, we find a size dependent anisotropy
splitting of the exciton emission in zero magnetic field.Comment: 15 pages, 7 figure