13 research outputs found

    Die Rolle von Nrf2 und p21 in der Hepatokarzinogenese

    Get PDF
    [no abstract

    Hepatocyte-specific S100a8 and S100a9 transgene expression in mice causes Cxcl1 induction and systemic neutrophil enrichment

    No full text
    Abstract Background Calprotectin consists of the Ca2+-binding proteins S100a8 and S100a9 that are induced in epithelial cells in response to tissue damage and infection. Both proteins are also secreted by activated innate immune cells and numerous studies demonstrate their crucial role in pathological conditions of acute and chronic inflammation. Results Here, we established a conditional mouse model with simultaneous S100a8 and S100a9 transgene expression in hepatocytes (TgS100a8a9hep) under the control of doxycycline to unravel the role of epithelial-derived Calprotectin on tissue homeostasis and inflammation. TgS100a8a9hep mice displayed a significant enrichment of neutrophils in peripheral blood and tissues with high blood content. Interestingly, Cxcl1 transcription was significantly induced in the liver of TgS100a8a9hep mice and primary hepatocytes derived thereof as compared to Control mice, accompanied by an increase of Cxcl1 serum levels. However, expression of other chemokines with a known function in neutrophil mobilization from the bone marrow, e.g. Csf3 and Cxcl2, was not altered. Doxycycline treatment of TgS100a8a9hep mice reduced Cxcl1 expression in the liver and resulted in normal numbers of neutrophils. Conclusion In summary, our data demonstrate for the first time that hepatocyte-specific S100a8 and S100a9 expression induces a systemic mobilization of neutrophils by a specific activation of Cxcl1 transcription in the liver.</p

    The degree of liver injury determines the role of p21 in liver regeneration and hepatocarcinogenesis in mice.

    Get PDF
    Hepatocellular carcinoma (HCC) frequently arises in the context of chronic injury that promotes DNA damage and chromosomal aberrations. The cyclin-dependent kinase inhibitor p21 is an important transcriptional target of several tumor suppressors, which promotes cell cycle arrest in response to many stimuli. The aim of this study was to further delineate the role of p21 in the liver during moderate and severe injury and to specify its role in the initiation and progression of HCC. Deletion of p21 led to continuous hepatocyte proliferation in mice with severe injury allowing animal survival but also facilitated rapid tumor development, suggesting that control of compensatory proliferation by high levels of p21 is critical to the prevention of tumor development. Unexpectedly, however, liver regeneration and hepatocarcinogenesis was impaired in p21-deficient mice with moderate injury. Mechanistically, loss of p21 was compensated by activation of Sestrin2, which impaired mitogenic mammalian target of rapamycin (mTOR) signaling and activated cytoprotective Nrf2 signaling. Conclusion: The degree of liver injury and the strength of p21 activation determine its effects on liver regeneration and tumor development in the liver. Moreover, our data uncover a molecular link in the complex mTOR, Nrf2, and p53/p21-signaling network through activation of Sestrin2, which regulates hepatocyte proliferation and tumor development in mice with liver injury. (Hepatology 2013;53:1143-1152)

    p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model.

    No full text
    Background & aims: A coordinated stress and regenerative response is important after hepatocyte damage. Here, we investigate the phenotypes that result from genetic abrogation of individual components of the checkpoint kinase 2/transformation-related protein 53 (p53)/cyclin-dependent kinase inhibitor 1A (p21) pathway in a murine model of metabolic liver injury. Methods: Nitisinone was reduced or withdrawn in Fah-/- mice lacking Chk2, p53, or p21, and survival, tumor development, liver injury, and regeneration were analyzed. Partial hepatectomies were performed and mice were challenged with the Fas antibody Jo2. Results: In a model of metabolic liver injury, loss of p53, but not Chk2, impairs the oxidative stress response and aggravates liver damage, indicative of a direct p53-dependent protective effect on hepatocytes. Cell-cycle control during chronic liver injury critically depends on the presence of both p53 and its downstream effector p21. In p53-deficient hepatocytes, unchecked proliferation occurs despite a strong induction of p21, showing a complex interdependency between p21 and p53. The increased regenerative potential in the absence of p53 cannot fully compensate the surplus injury and is not sufficient to promote survival. Despite the distinct phenotypes associated with the loss of individual components of the DNA damage response, gene expression patterns are dominated by the severity of liver injury, but reflect distinct effects of p53 on proliferation and the anti-oxidative stress response. Conclusions: Characteristic phenotypes result from the genetic abrogation of individual components of the DNA damage-response cascade in a liver injury model. The extent to which loss of gene function can be compensated, or affects injury and proliferation, is related to the level at which the cascade is interrupted. Accession numbers of repository for expression microarray data: GSE156983, GSE156263, GSE156852, and GSE156252

    Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers

    Full text link
    BACKGROUND & AIMS Carriage of rs738409:G in patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with PNPLA3 rs738409:G. This study explores the risk-associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including: 1,031 with alcohol-related cirrhosis and HCC; 1,653 with alcohol-related cirrhosis without HCC; 2,588 alcohol misusers with no liver disease; and 899 healthy controls. Genetic associations with the risks for alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for both cirrhosis (OR 0.79 [95% CI 0.72-0.88], p=8.13Ă—10-6) and HCC (OR 0.77 [95% CI 0.68-0.89], p=2.27Ă—10-4), while carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR 1.70 [95% CI 1.54-1.88], p=1.52x10-26) and HCC (OR 1.77 [95% CI 1.58-1.98], p=2.31Ă—10-23). These associations remained significant after adjusting for age, sex, body mass index, type II diabetes mellitus and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women but the protective effect against the subsequent development of HCC was only observed in men (p=1.72Ă—10-4; ORallelic, 0.75; 95% CI, 0.64-0.87). CONCLUSIONS Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population

    Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development

    Get PDF
    Hepatocellular carcinoma (HCC) represents a classic example of inflammation-linked cancer. To characterize the role of the immune system in hepatic injury and tumor development, we comparatively studied the extent of liver disease and hepatocarcinogenesis in immunocompromised versus immunocompetent Fah-deficient mice. Strikingly, chronic liver injury and tumor development were markedly suppressed in alymphoid Fah(-/-) mice despite an overall increased mortality. Mechanistically, we show that CD8(+) T cells and lymphotoxin β are central mediators of HCC formation. Antibody-mediated depletion of CD8(+) T cells as well as pharmacological inhibition of the lymphotoxin-β receptor markedly delays tumor development in mice with chronic liver injury. Thus, our study unveils distinct functions of the immune system, which are required for liver regeneration, survival, and hepatocarcinogenesis

    Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers.

    Get PDF
    BACKGROUND & AIMS Carriage of rs738409:G in patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with PNPLA3 rs738409:G. This study explores the risk-associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including: 1,031 with alcohol-related cirrhosis and HCC; 1,653 with alcohol-related cirrhosis without HCC; 2,588 alcohol misusers with no liver disease; and 899 healthy controls. Genetic associations with the risks for alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for both cirrhosis (OR 0.79 [95% CI 0.72-0.88], p=8.13Ă—10-6) and HCC (OR 0.77 [95% CI 0.68-0.89], p=2.27Ă—10-4), while carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR 1.70 [95% CI 1.54-1.88], p=1.52x10-26) and HCC (OR 1.77 [95% CI 1.58-1.98], p=2.31Ă—10-23). These associations remained significant after adjusting for age, sex, body mass index, type II diabetes mellitus and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women but the protective effect against the subsequent development of HCC was only observed in men (p=1.72Ă—10-4; ORallelic, 0.75; 95% CI, 0.64-0.87). CONCLUSIONS Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population
    corecore