2,777 research outputs found

    Star Formation-Regulated Growth of Black Holes in Protogalactic Spheroids

    Get PDF
    The observed relation between central black hole mass and spheroid velocity dispersion is interpreted in terms of a self-regulation model that incorporates a viscous Keplerian accretion disk to feed the black hole, embedded in a massive, self-gravitating star forming disk that eventually populates the spheroid. The model leads to a constant ratio between black hole mass and spheroid mass which is equal to the inverse of the critical Reynolds number for the onset of turbulence in the accretion disk surrounding the central black hole. Applying the fundamental plane correlation for spheroids, we find that the black hole mass has a power-law dependence on the spheroid velocity dispersion with a slope in the range of 4-5. We explain the larger scatter in the Magorrian relation with respect to the black hole mass-spheroid velocity dispersion relationship as a result of secular evolution of the spheroid that primarily affects its luminosity and to a much lesser extent its velocity dispersion.Comment: 12 pages, no figures, submitted to ApJ Letter

    Impact of a non-Gaussian density field on Sunyaev-Zeldovich observables

    Full text link
    The main statistical properties of the Sunyaev-Zeldovich (S-Z) effect - the power spectrum, cluster number counts, and angular correlation function - are calculated and compared within the framework of two density fields which differ in their predictions of the cluster mass function at high redshifts. We do so for the usual Press and Schechter mass function, which is derived on the basis of a Gaussian density fluctuation field, and for a mass function based on a chi^2 distributed density field. These three S-Z observables are found to be very significantly dependent on the choice of the mass function. The different predictions of the Gaussian and non-Gaussian density fields are probed in detail by investigating the behaviour of the three S-Z observables in terms of cluster mass and redshift. The formation time distribution of clusters is also demonstrated to be sensitive to the underlying mass function. A semi-quantitative assessment is given of its impact on the concentration parameter and the temperature of intracluster gas.Comment: 17 pages, 11 figures, accepted for publication in MNRA

    Narrow-line Seyfert 1 Galaxies and the M_BH - sigma Relation

    Full text link
    We have studied the location of narrow-line Seyfert 1 (NLS1) galaxies and broad-line Seyfert 1 (BLS1) galaxies on the M_BH - sigma relation of non-active galaxies. We find that NLS1 galaxies as a class - as well as the BLS1 galaxies of our comparison sample - do follow the M_BH-sigma relation of non-active galaxies if we use the width of the [SII]6716,6731 emission lines as surrogate for stellar velocity dispersion, sigma_*. We also find that the width of [OIII]5007 is a good surrogate for sigma_*, but only after (a) removal of asymmetric blue wings, and, more important, after (b) excluding core [OIII] lines with strong blueshifts (i.e., excluding galaxies which have their [OIII] velocity fields dominated by radial motions, presumably outflows). The same galaxies which are extreme outliers in [OIII] still follow the M_BH - sigma relation in [SII]. We confirm previous findings that NLS1 galaxies are systematically off-set from the M_BH - sigma relation if the full [OIII] profile is used to measure sigma. We systematically investigate the influence of several parameters on the NSL1 galaxies' location on the M_BH - sigma plane: [OIII]_core blueshift, L/L_Edd, intensity ratio FeII/H_beta, NLR density, and absolute magnitude. Implications for NLS1 models and for their evolution along the M_BH - sigma relation are discussed.Comment: ApJ Letters, in press (3 figures, one in colour

    Reconstruction of primordial density fields

    Full text link
    The Monge-Ampere-Kantorovich (MAK) reconstruction is tested against cosmological N-body simulations. Using only the present mass distribution sampled with particles, and the assumption of homogeneity of the primordial distribution, MAK recovers for each particle the non-linear displacement field between its present position and its Lagrangian position on a primordial uniform grid. To test the method, we examine a standard LCDM N-body simulation with Gaussian initial conditions and 6 models with non-Gaussian initial conditions: a chi-squared model, a model with primordial voids and four weakly non-Gaussian models. Our extensive analyses of the Gaussian simulation show that the level of accuracy of the reconstruction of the nonlinear displacement field achieved by MAK is unprecedented, at scales as small as about 3 Mpc. In particular, it captures in a nontrivial way the nonlinear contribution from gravitational instability, well beyond the Zel'dovich approximation. This is also confirmed by our analyses of the non-Gaussian samples. Applying the spherical collapse model to the probability distribution function of the divergence of the displacement field, we also show that from a well-reconstructed displacement field, such as that given by MAK, it is possible to accurately disentangle dynamical contributions induced by gravitational clustering from possible initial non-Gaussianities, allowing one to efficiently test the non-Gaussian nature of the primordial fluctuations. In addition, a simple application of MAK using the Zel'dovich approximation allows one to also recover accurately the present-day peculiar velocity field on scales of about 8 Mpc.Comment: Version to appear in MNRAS, 24 pages, 21 figures appearing (uses 35 figure files), 1 tabl

    Galaxy Mergers at z>1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies

    Full text link
    We present a measurement of the galaxy merger fraction and number density from observations in the Hubble Ultra Deep Field for 0.5<z<2.5. We fit the combination of broadband data and slitless spectroscopy of 1308 galaxies with stellar population synthesis models to select merging systems based on a stellar mass of >10^10 M_sol. When correcting for mass incompleteness, the major merger fraction is not simply proportional to (1+z)^m, but appears to peak at z_frac~=1.3+-0.4. From this merger fraction, we infer that ~42% of massive galaxies have undergone a major merger since z~1. We show that the major merger number density peaks at z_dens~1.2, which marks the epoch where major merging of massive galaxies is most prevalent. This critical redshift is comparable to the peak of the cosmic star formation rate density, and occurs roughly 2.6 Gyr earlier in cosmic time than the peak in the number density of X-ray selected active galactic nuclei. These observations support an indirect evolutionary link between merging, starburst, and active galaxies.Comment: Accepted to ApJ. 7 pages, 6 figures, 1 table. Uses and includes emulateapj.cls. In the initial submission, Figures 1 and 2 where switche

    Active Galactic Nuclei and Massive Galaxy Cores

    Get PDF
    Self-consistent N-body simulations have been performed in order to study the effects of a central active galactic nucleus (AGN) on the dark matter profile of a typical giant elliptical galaxy. In our analysis, we assume that periodic bipolar outbursts from a central AGN can induce harmonic oscillatory motions on both sides of the gas core. Using realistic AGN properties, we find that the motions of the gas core, driven by such feedback processes, can flatten the dark matter and/or stellar profiles after 4-5 Gyr. Such results are consistent with observational studies such as those of Kormendy et al. (2006) which suggest that most giant elliptical galaxies have cores or ``missing light'' in their inner part. Since stars behave as a ``collisionless'' fluid similar to dark matter, the density profile both of stars and dark matter should be affected in a similar way, leading to an effective reduction in the central brightness

    Galaxy Zoo: Multimergers and the Millennium Simulation

    Get PDF
    We present a catalogue of 39 multiple mergers, found using the mergers catalogue of the Galaxy Zoo project for z <0.1, and compare them to corresponding semi-analytical galaxies from the Millennium Simulation. We estimate the (volume-limited) multimerger fraction of the local Universe using our sample and find it to be at least 2 orders of magnitude less than binary mergers - in good agreement with the simulations (especially the Munich group). We then investigate the properties of galaxies in binary mergers and multimergers (morphologies, colours, stellar masses and environment) and compare these results with those predicted by the semi-analytical galaxies. We find that multimergers favour galaxies with properties typical of elliptical morphologies and that this is in qualitative agreement with the models. Studies of multimergers thus provide an independent (and largely corroborating) test of the Millennium semi-analytical models.Peer reviewe

    Laser-Doppler gas-velocity instrument

    Get PDF
    Three-D instrument using a laser light source measures both turbulence and mean velocity of subsonic and supersonic gas flows. This instrument is based on the measurement of the Doppler frequency shift of light waves scattered by moving particles in the gas stream

    3D simulations of the early stages of AGN jets: geometry, thermodynamics and backflow

    Full text link
    We investigate the interplay between jets from Active Galactic Nuclei (AGNs) and the surrounding InterStellar Medium (ISM) through full 3D, high resolution, Adaptive Mesh Refinement simulations performed with the FLASH code. We follow the jet- ISM system for several Myr in its transition from an early, compact source to an extended one including a large cocoon. During the jet evolution, we identify three major evolutionary stages and we find that, contrary to the prediction of popular theoretical models, none of the simulations shows a self-similar behavior. We also follow the evolution of the energy budget, and find that the fraction of input power deposited into the ISM (the AGN coupling constant) is of order of a few percent during the first few Myr. This is in broad agreement with galaxy formation models employing AGN feedback. However, we find that in these early stages, this energy is deposited only in a small fraction (< 1%) of the total ISM volume. Finally we demonstrate the relevance of backflows arising within the extended cocoon generated by a relativistic AGN jet within the ISM of its host galaxy, previously proposed as a mechanism for self-regulating the gas accretion onto the central object. These backflows tend later to be destabilized by the 3D dynamics, rather than by hydrodynamic (Kelvin- Helmholtz) instabilities. Yet, in the first few hundred thousand years, backflows may create a central accretion region of significant extent, and convey there as much as a few millions of solar masses.Comment: Accepted in MNRAS - 16 pages, 12 figures - Multimedia available on the author's webpage: http://www.mpia.de/~ciel
    corecore