68 research outputs found
Fixed Volume Effect on Polar Properties and Phase Diagrams of Ferroelectric Semi-ellipsoidal Nanoparticles
For advanced applications in modern industry it is very important to reduce
the volume of ferroelectric nanoparticles without serious deterioration of
their polar properties. In many practically important cases fixed volume
(rather than fixed size) corresponds to realistic technological conditions of
nanoparticles fabrication. The letter is focused on the theoretical study of
the behavior of ferroelectric polarization, paramagnetoelectric coefficient and
phase diagrams of semi-ellipsoidal nanoparticles with fixed volume V. Our
approach combines the Landau-Ginzburg-Devonshire phenomenology, classical
electrostatics and elasticity theory. Our results show that the size effects of
the phase diagrams and polarization of semi-ellipsoidal BiFeO3 nanoparticles
nontrivially depends on V. These findings provide a path to optimize the polar
properties of nanoparticles by controlling their phase diagrams at a fixed
volume.Comment: 15 pages, 5 figures, we added the section IV. Paramagnetoelectric
(PME) coefficient at fixed volume in this version and changed title and
abstract accordingl
Ferroelectric nanocomposites based on polymer ferroelectrics and graphene/oxide graphene: Computer modeling and SPFM experiments
The authors are thankful to the Russian Science Foundation (RSF grant # 16-19-10112) and to the Russian Foundation for Basic Researches (RFBR grants # 16-51-53917) for support. Prof. Xiang-Jian Meng expresses his gratitude to the National Natural Science Foundation of China (NNSFC) for support of the project: "The study on the new type of infrared detector based on ferroelectric tunnel junction"
Structural and Magnetic Phase Transitions in BiFeMnO Solid Solution Driven by Temperature
The crystal structure and magnetic state of the (1 − x)BiFeO-(x)BiMnO solid solution has been analyzed by X-ray diffraction using lab-based and synchrotron radiation facilities, magnetization measurements, differential thermal analysis, and differential scanning calorimetry. Dopant concentration increases lead to the room-temperature structural transitions from the polar-active rhombohedral phase to the antipolar orthorhombic phase, and then to the monoclinic phase accompanied by the formation of two-phase regions consisting of the adjacent structural phases in the concentration ranges 0.25 < x < 0.30 and 0.50 ≤ x < 0.65, respectively. The accompanied changes in the magnetic structure refer to the magnetic transitions from the modulated antiferromagnetic structure to the non-colinear antiferromagnetic structure, and then to the orbitally ordered ferromagnetic structure. The compounds with a two-phase structural state at room temperature are characterized by irreversible temperature-driven structural transitions, which favor the stabilization of high-temperature structural phases. The magnetic structure of the compounds also exhibits an irreversible temperature-induced transition, resulting in an increase of the contribution from the magnetic phase associated with the high-temperature structural phase. The relationship between the structural parameters and the magnetic state of the compounds with a metastable structure is studied and discussed depending on the chemical composition and heating prehistory
Crystal and magnetic structure transitions in bimno3+δ ceramics driven by cation vacancies and temperature
The crystal structure of BiMnO ceramics has been studied as a function of nominal oxygen excess and temperature using synchrotron and neutron powder diffraction, magnetometry and differential scanning calorimetry. Increase in oxygen excess leads to the structural transformations from the monoclinic structure (C2/c) to another monoclinic (P2/c), and then to the orthorhombic (Pnma) structure through the two-phase regions. The sequence of the structural transformations is accompanied by a modification of the orbital ordering followed by its disruption. Modification of the orbital order leads to a rearrangement of the magnetic structure of the compounds from the long-range ferromagnetic to a mixed magnetic state with antiferromagnetic clusters coexistent in a ferromagnetic matrix followed by a frustration of the long-range magnetic order. Temperature increase causes the structural transition to the nonpolar orthorhombic phase regardless of the structural state at room temperature; the orbital order is destroyed in compounds BiMnO (δ ≤ 0.14) at temperatures above 470 °C
- …