13 research outputs found

    PLoS One

    Get PDF
    Studies using health administrative databases (HAD) may lead to biased results since information on potential confounders is often missing. Methods that integrate confounder data from cohort studies, such as multivariate imputation by chained equations (MICE) and two-stage calibration (TSC), aim to reduce confounding bias. We provide new insights into their behavior under different deviations from representativeness of the cohort. We conducted an extensive simulation study to assess the performance of these two methods under different deviations from representativeness of the cohort. We illustrate these approaches by studying the association between benzodiazepine use and fractures in the elderly using the general sample of French health insurance beneficiaries (EGB) as main database and two French cohorts (Paquid and 3C) as validation samples. When the cohort was representative from the same population as the HAD, the two methods are unbiased. TSC was more efficient and faster but its variance could be slightly underestimated when confounders were non-Gaussian. If the cohort was a subsample of the HAD (internal validation) with the probability of the subject being included in the cohort depending on both exposure and outcome, MICE was unbiased while TSC was biased. The two methods appeared biased when the inclusion probability in the cohort depended on unobserved confounders. When choosing the most appropriate method, epidemiologists should consider the origin of the cohort (internal or external validation) as well as the (anticipated or observed) selection biases of the validation sample

    User evaluation indicates high quality of the Surveillance Outbreak Response Management and Analysis System (SORMAS) after field deployment in Nigeria in 2015 and 2018

    Get PDF
    During the West African Ebola virus disease outbreak in 2014-15, health agencies had severe challenges with case notification and contact tracing. To overcome these, we developed the Surveillance, Outbreak Response Management and Analysis System (SORMAS). The objective of this study was to measure perceived quality of SORMAS and its change over time. We ran a 4-week-pilot and 8-week-implementation of SORMAS among hospital informants in Kano state, Nigeria in 2015 and 2018 respectively. We carried out surveys after the pilot and implementation asking about usefulness and acceptability. We calculated the proportions of users per answer together with their 95% confidence intervals (CI) and compared whether the 2015 response distributions differed from those from 2018. Total of 31 and 74 hospital informants participated in the survey in 2015 and 2018, respectively. In 2018, 94% (CI: 89-100%) of users indicated that the tool was useful, 92% (CI: 86-98%) would recommend SORMAS to colleagues and 18% (CI: 10-28%) had login difficulties. In 2015, the proportions were 74% (CI: 59-90%), 90% (CI: 80-100%), and 87% (CI: 75-99%) respectively. Results indicate high usefulness and acceptability of SORMAS. We recommend mHealth tools to be evaluated to allow repeated measurements and comparisons between different versions and users

    Adjustment for Unobserved Confounders in Health Administrative Databases

    No full text
    International audienceBackgroundIn health administrative databases (HAD) information on potential confounders such as tobacco and alcohol consumption are missing. Often, this information is readily available in a cohort data. Multivariate imputation by chained equations (MICE) and Two stage calibration (TSC) may be used to adjust for unobserved confounders (UC) in HAD using cohort data.ObjectivesWe aim at comparing the performances of MICE and TSC in adjusting for UC in HAD using a cohort data in a simulation study.MethodsWe generated a HAD with 10000 observations, a binary exposure, binary response and two observed confounders (OC). Likewise a cohort data with 1000 observations and additional two UC. The design exploited various distribution of OC and UC, strength of confounding effect, misspecification of propensity score model and lack of representativeness of the cohort data to HAD. MICE was applied by imputing the UC or propensity scores while TSC was applied with or without spline. Comparison was based on Bias, coverage rate of the confidence interval and mean square (MSE).ResultsWhen the cohort data is a representative sample with Gaussian confounders and a well-defined propensity score model assumed; both methods gives no bias, nominal coverage rate with smallest variance from TSC. Similar results were got in a misspecified propensity score (MPS) setting with smaller coverage rate for TSC. In addition, with strong confounding effect of UC and nonstandard distributions assumed, the coverage rate of TSC may slightly decrease in a MPS setting, but this is ameliorated by TSC with spline. Moreover, under lack of representativeness of the cohort sample, both methods are bias with low coverage rates.ConclusionsOur results justify that when a well specified Propensity score model is assumed, TSC and MICE gives better and equivalent results but in a misspecified setting, the coverage of TSC is poorer than that of MICE although the bias and standard errors might still be small. These methods will hereafter be used to study the association between benzodiazepine consumption and fracture in the French HAD by utilising information on UC from a cohort study

    A Novel Tool for Real-time Estimation of Epidemiological Parameters of Communicable Diseases Using Contact-Tracing Data: Development and Deployment

    No full text
    BackgroundThe Surveillance Outbreak Response Management and Analysis System (SORMAS) contains a management module to support countries in their epidemic response. It consists of the documentation, linkage, and follow-up of cases, contacts, and events. To allow SORMAS users to visualize data, compute essential surveillance indicators, and estimate epidemiological parameters from such network data in real-time, we developed the SORMAS Statistics (SORMAS-Stats) application. ObjectiveThis study aims to describe the essential visualizations, surveillance indicators, and epidemiological parameters implemented in the SORMAS-Stats application and illustrate the application of SORMAS-Stats in response to the COVID-19 outbreak. MethodsBased on findings from a rapid review and SORMAS user requests, we included the following visualization and estimation of parameters in SORMAS-Stats: transmission network diagram, serial interval (SI), time-varying reproduction number R(t), dispersion parameter k, and additional surveillance indicators presented in graphs and tables. We estimated SI by fitting lognormal, gamma, and Weibull distributions to the observed distribution of the number of days between symptom onset dates of infector-infectee pairs. We estimated k by fitting a negative binomial distribution to the observed number of infectees per infector. Furthermore, we applied the Markov Chain Monte Carlo approach and estimated R(t) using the incidence data and the observed SI computed from the transmission network data. ResultsUsing COVID-19 contact-tracing data of confirmed cases reported between July 31 and October 29, 2021, in the Bourgogne-Franche-Comté region of France, we constructed a network diagram containing 63,570 nodes. The network comprises 1.75% (1115/63,570) events, 19.59% (12,452/63,570) case persons, and 78.66% (50,003/63,570) exposed persons, including 1238 infector-infectee pairs and 3860 transmission chains with 24.69% (953/3860) having events as the index infector. The distribution with the best fit to the observed SI data was a lognormal distribution with a mean of 4.30 (95% CI 4.09-4.51) days. We estimated a dispersion parameter k of 21.11 (95% CI 7.57-34.66) and an effective reproduction number R of 0.9 (95% CI 0.58-0.60). The weekly estimated R(t) values ranged from 0.80 to 1.61. ConclusionsWe provide an application for real-time estimation of epidemiological parameters, which is essential for informing outbreak response strategies. The estimates are commensurate with findings from previous studies. The SORMAS-Stats application could greatly assist public health authorities in the regions using SORMAS or similar tools by providing extensive visualizations and computation of surveillance indicators

    Electron-impact double ionization of He by applying the Jacobi matrix approach to the Faddeev-Merkuriev equations

    No full text
    We apply the Jacobi matrix method to the Faddeev-Merkuriev differential equations in order to calculate the three-body wave function that describes the double continuum of an atomic two-electron system. This function is used to evaluate within the first-order Born approximation, the fully differential cross sections for (e, 3e) processes in helium. The calculations are performed in the case of a coplanar geometry in which the incident electron is fast and both ejected electrons are slow. Quite unexpectedly, the results obtained by reducing our double-continuum wave function to its asymptotic expression are in satisfactory agreement with all the experimental data of Lahmam-Bennani et al. [A. Lahaman-Bennani et al., Phys. Rev. A 59, 3548 (1999); A. Kheifets et al., J. Phys. B 32, 5047 (1999).] without any need for renormalizing the data. When the full double-continuum wave function is used, the agreement of the results with the experimental data improves significantly. However, a detailed analysis of the calculations shows that full convergence in terms of the basis size is not reached. This point is discussed in detail

    User Evaluation Indicates High Quality of the Surveillance Outbreak Response Management and Analysis System (SORMAS) After Field Deployment in Nigeria in 2015 and 2018

    Get PDF
    During the West African Ebola virus disease outbreak in 2014–15, health agencies had severe challenges with case notification and contact tracing. To overcome these, we developed the Surveillance, Outbreak Response Management and Analysis System (SORMAS). The objective of this study was to measure perceived quality of SORMAS and its change over time. We ran a 4-week-pilot and 8-week-implementation of SORMAS among hospital informants in Kano state, Nigeria in 2015 and 2018 respectively. We carried out surveys after the pilot and implementation asking about usefulness and acceptability. We calculated the proportions of users per answer together with their 95% confidence intervals (CI) and compared whether the 2015 response distributions differed from those from 2018. Total of 31 and 74 hospital informants participated in the survey in 2015 and 2018, respectively. In 2018, 94% (CI: 89–100%) of users indicated that the tool was useful, 92% (CI: 86–98%) would recommend SORMAS to colleagues and 18% (CI: 10–28%) had login difficulties. In 2015, the proportions were 74% (CI: 59–90%), 90% (CI: 80–100%), and 87% (CI: 75–99%) respectively. Results indicate high usefulness and acceptability of SORMAS. We recommend mHealth tools to be evaluated to allow repeated measurements and comparisons between different versions and users.Peer Reviewe

    The Surveillance Outbreak Response Management and Analysis System (SORMAS): Digital Health Global Goods Maturity Assessment.

    No full text
    Background: Digital health is a dynamic field that has been generating a large number of tools; many of these tools do not have the level of maturity required to function in a sustainable model. It is in this context that the concept of global goods maturity is gaining importance. Digital Square developed a global good maturity model (GGMM) for digital health tools, which engages the digital health community to identify areas of investment for global goods. The Surveillance Outbreak Response Management and Analysis System (SORMAS) is an open-source mobile and web application software that we developed to enable health workers to notify health departments about new cases of epidemic-prone diseases, detect outbreaks, and simultaneously manage outbreak response. Objective: The objective of this study was to evaluate the maturity of SORMAS using Digital Square's GGMM and to describe the applicability of the GGMM on the use case of SORMAS and identify opportunities for system improvements. Methods: We evaluated SORMAS using the GGMM version 1.0 indicators to measure its development. SORMAS was scored based on all the GGMM indicator scores. We described how we used the GGMM to guide the development of SORMAS during the study period. GGMM contains 15 subindicators grouped into the following core indicators: (1) global utility, (2) community support, and (3) software maturity. Results: The assessment of SORMAS through the GGMM from November 2017 to October 2019 resulted in full completion of all subscores (10/30, (33%) in 2017; 21/30, (70%) in 2018; and 30/30, (100%) in 2019). SORMAS reached the full score of the GGMM for digital health software tools by accomplishing all 10 points for each of the 3 indicators on global utility, community support, and software maturity. Conclusions: To our knowledge, SORMAS is the first electronic health tool for disease surveillance, and also the first outbreak response management tool, that has achieved a 100% score. Although some conceptual changes would allow for further improvements to the system, the GGMM already has a robust supportive effect on developing software toward global goods maturity

    Use of Surveillance Outbreak Response Management and Analysis System for Human Monkeypox Outbreak, Nigeria, 2017-2019.

    No full text
    In November 2017, the mobile digital Surveillance Outbreak Response Management and Analysis System was deployed in 30 districts in Nigeria in response to an outbreak of monkeypox. Adaptation and activation of the system took 14 days, and its use improved timeliness, completeness, and overall capacity of the response

    User Evaluation Indicates High Quality of the Surveillance Outbreak Response Management and Analysis System (SORMAS) After Field Deployment in Nigeria in 2015 and 2018.

    No full text
    During the West African Ebola virus disease outbreak in 2014-15, health agencies had severe challenges with case notification and contact tracing. To overcome these, we developed the Surveillance, Outbreak Response Management and Analysis System (SORMAS). The objective of this study was to measure perceived quality of SORMAS and its change over time. We ran a 4-week-pilot and 8-week-implementation of SORMAS among hospital informants in Kano state, Nigeria in 2015 and 2018 respectively. We carried out surveys after the pilot and implementation asking about usefulness and acceptability. We calculated the proportions of users per answer together with their 95% confidence intervals (CI) and compared whether the 2015 response distributions differed from those from 2018. Total of 31 and 74 hospital informants participated in the survey in 2015 and 2018, respectively. In 2018, 94% (CI: 89-100%) of users indicated that the tool was useful, 92% (CI: 86-98%) would recommend SORMAS to colleagues and 18% (CI: 10-28%) had login difficulties. In 2015, the proportions were 74% (CI: 59-90%), 90% (CI: 80-100%), and 87% (CI: 75-99%) respectively. Results indicate high usefulness and acceptability of SORMAS. We recommend mHealth tools to be evaluated to allow repeated measurements and comparisons between different versions and users
    corecore