208 research outputs found
Genetic Features of Metachronous Esophageal Cancer Developed in Hodgkin's Lymphoma or Breast Cancer Long-Term Survivors: An Exploratory Study.
Background
Development of novel therapeutic drugs and regimens for cancer treatment has led to improvements in patient long-term survival. This success has, however, been accompanied by the increased occurrence of second primary cancers. Indeed, patients who received regional radiotherapy for Hodgkin's Lymphoma (HL) or breast cancer may develop, many years later, a solid metachronous tumor in the irradiated field. Despite extensive epidemiological studies, little information is available on the genetic changes involved in the pathogenesis of these solid therapy-related neoplasms.
Methods
Using microsatellite markers located in 7 chromosomal regions frequently deleted in sporadic esophageal cancer, we investigated loss of heterozygosity (LOH) and microsatellite instability (MSI) in 46 paired (normal and tumor) samples. Twenty samples were of esophageal carcinoma developed in HL or breast cancer long-term survivors: 14 squamous cell carcinomas (ESCC) and 6 adenocarcinomas (EADC), while 26 samples, used as control, were of sporadic esophageal cancer (15 ESCC and 11 EADC).
Results
We found that, though the overall LOH frequency at the studied chromosomal regions was similar among metachronous and sporadic tumors, the latter exhibited a statistically different higher LOH frequency at 17q21.31 (p = 0.018). By stratifying for tumor histotype we observed that LOH at 3p24.1, 5q11.2 and 9p21.3 were more frequent in ESCC than in EADC suggesting a different role of the genetic determinants located nearby these regions in the development of the two esophageal cancer histotypes.
Conclusions
Altogether, our results strengthen the genetic diversity among ESCC and EADC whether they occurred spontaneously or after therapeutic treatments. The presence of histotype-specific alterations in esophageal carcinoma arisen in HL or breast cancer long-term survivors suggests that their transformation process, though the putative different etiological origin, may retrace sporadic ESCC and EADC carcinogenesis
Small molecules and targeted therapies in distant metastatic disease
Chemotherapy, biological agents or combinations of both have had little impact on survival of patients with metastatic melanoma. Advances in understanding the genetic changes associated with the development of melanoma resulted in availability of promising new agents that inhibit specific proteins up-regulated in signal cell pathways or inhibit anti-apoptotic proteins. Sorafenib, a multikinase inhibitor of the RAF/RAS/MEK pathway, elesclomol (STA-4783) and oblimersen (G3139), an antisense oligonucleotide targeting anti-apoptotic BCl-2, are in phase III clinical studies in combination with chemotherapy. Agents targeting mutant B-Raf (RAF265 and PLX4032), MEK (PD0325901, AZD6244), heat-shock protein 90 (tanespimycin), mTOR (everolimus, deforolimus, temsirolimus) and VEGFR (axitinib) showed some promise in earlier stages of clinical development. Receptor tyrosine-kinase inhibitors (imatinib, dasatinib, sunitinib) may have a role in treatment of patients with melanoma harbouring c-Kit mutations. Although often studied as single agents with disappointing results, new targeted drugs should be more thoroughly evaluated in combination therapies. The future of rational use of new targeted agents also depends on successful application of analytical techniques enabling molecular profiling of patients and leading to selection of likely therapy responder
Neoadjuvant plus adjuvant combined or sequenced vemurafenib, cobimetinib and atezolizumab in patients with high-risk, resectable BRAF-mutated and wild-type melanoma: NEO-TIM, a phase II randomized non-comparative study
Background: Following the increased survival of patients with metastatic melanoma thanks to immunotherapy and targeted therapy, neoadjuvant approaches are being investigated to address the unmet needs of unresponsive and intolerant patients. We aim to investigate the efficacy of neoadjuvant plus adjuvant combined or sequenced vemurafenib, cobimetinib and atezolizumab in patients with high-risk, resectable BRAF-mutated and wild-type melanoma. Methods: The study is a phase II, open-label, randomized non-comparative trial in patients with stage IIIB/C/D surgically resectable, BRAF-mutated and wild-type melanoma, with three possible treatments: (1) vemurafenib 960 mg twice daily from day 1 to 42; (2) vemurafenib 720 mg twice daily from day 1 to 42; (3) cobimetinib 60 mg once daily from day 1 to 21 and from day 29 to 42; and (4) atezolizumab 840 mg for two cycles (day 22 and day 43). Patients will be randomized to three different arms: A) BRAF-mutated patients will receive over 6 weeks (1) + (3); B) BRAF-mutated patients will receive over 6 weeks (2) + (3) + (4); C) BRAF wild-type patients will receive over 6 weeks (3) + (4). All patients will also receive atezolizumab 1200 mg every 3 weeks for 17 cycles after surgery and after a second screening period (up to 6 weeks). Discussion: Neoadjuvant therapy for regional metastases may improve operability and outcomes and facilitate the identification of biomarkers that can guide further lines of treatment. Patients with clinical stage III melanoma may especially benefit from neoadjuvant treatment, as the outcomes of surgery alone are very poor. It is expected that the combination of neoadjuvant and adjuvant treatment may reduce the incidence of relapse and improve survival
Crossover and rechallenge with pembrolizumab in recurrent patients from the EORTC 1325-MG/Keynote-054 phase III trial, pembrolizumab versus placebo after complete resection of high-risk stage III melanoma
Background: In the phase III double-blind European Organisation for Research and Treatment of Cancer 1325/KEYNOTE-054 trial, pembrolizumab improved recurrence-free and distant metastasis-free survival in patients with stage III cutaneous melanoma with complete resection of lymph nodes. In the pembrolizumab group, the incidence of grade I–V and of grade III–V immune-related adverse events (irAEs) was 37% and 7%, respectively. Methods: Patients were randomised to receive intravenous (i.v.) pembrolizumab 200 mg (N = 514) or placebo (N = 505) every 3 weeks, up to 1 year. On recurrence, patients could enter part 2 of the study: pembrolizumab 200 mg i.v. every 3 weeks up to 2 years, for crossover (those who received placebo) or rechallenge (those who had recurrence ≥6 months after completing 1-year adjuvant pembrolizumab therapy). For these patients, we present the safety profile and efficacy outcomes. Results: At the clinical cut-off (16-Oct-2020), in the placebo group, 298 patients had a disease recurrence, in which 155 (52%) crossed over (‘crossover’). In the pembrolizumab group, 297 patients completed the 1-year treatment period; 47 had a recurrence ≥6 months later, in which 20 (43%) entered the rechallenge part 2 (‘rechallenge’). In the crossover group, the median progression-free survival (PFS) was 8.5 months (95% confidence interval [CI] 5.7–15.2) and the 3-year PFS rate was 32% (95% CI 25–40%). Among 80 patients with stage IV evaluable disease, 31 (39%) had an objective response: 14 (18%) patients with complete response (CR) and 17 (21%) patients with partial response. The 2-year PFS rate from response was 69% (95% CI 48–83%). In the rechallenge group, the median PFS was 4.1 months (95% CI 2.6–NE). Among 9 patients with stage IV evaluable disease, 1 had an objective response (CR). Among the 175 patients, 51 (29%) had a grade I–IV irAE and 11 (6%) had a grade III–IV irAE. Conclusions: Pembrolizumab treatment after crossover yielded an overall 3-year PFS rate of 32% and a 39% ORR in evaluable patients, but the efficacy (11% ORR) was lower in those rechallenged
No impact of NRAS mutation on features of primary and metastatic melanoma or on outcomes of checkpoint inhibitor immunotherapy: An italian melanoma intergroup (IMI) study
Neuroblastoma RAS Viral Oncogen Homolog (NRAS) mutant melanoma is usually considered more aggressive and more responsive to checkpoint inhibitor immunotherapy (CII) than NRAS wildtype. We retrospectively recruited 331 metastatic melanoma patients treated with CII as first line: 162 NRAS-mutant/BRAF wild-type and 169 wt/wt. No substantial differences were observed among the two cohorts regarding the melanoma onset and disease-free interval. Also, overall response to CII, progression-free survival and overall survival were similar in the two groups. Therefore, our data do not show increased aggressiveness and higher responsiveness to CII in NRAS-mutant melanoma. The controversy in the published data could be due to different patient characteristics and treatment heterogeneity. We believe our data adds evidence to clear up these controversial issues. Aims: It is debated whether the NRAS-mutant melanoma is more aggressive than NRAS wildtype. It is equally controversial whether NRAS-mutant metastatic melanoma (MM) is more responsive to checkpoint inhibitor immunotherapy (CII). 331 patients treated with CII as first-line were retrospectively recruited: 162 NRAS-mutant/BRAF wild-type (mut/wt) and 169 wt/wt. We compared the two cohorts regarding the characteristics of primary and metastatic disease, disease-free interval (DFI) and outcome to CII. No substantial differences were observed between the two groups at melanoma onset, except for a more frequent ulceration in the wt/wt group (p = 0.03). Also, the DFI was very similar in the two cohorts. In advanced disease, we only found lung and brain progression more frequent in the wt/wt group. Regarding the outcomes to CII, no significant differences were reported in overall response rate (ORR), disease control rate (DCR), progression free survival (PFS) or overall survival (OS) (42% versus 37%, 60% versus 59%, 12 (95% CI, 7-18) versus 9 months (95% CI, 6-16) and 32 (95% CI, 23-49) versus 27 months (95% CI, 16-35), respectively). Irrespectively of mutational status, a longer OS was significantly associated with normal LDH, <3 metastatic sites, lower white blood cell and platelet count, lower neutrophil-to-lymphocyte (N/L) ratio. Our data do not show increased aggressiveness and higher responsiveness to CII in NRAS-mutant MM
- …