23 research outputs found

    Mutation spectrum of MLL2 in a cohort of kabuki syndrome patients

    Get PDF
    ABSTRACT: BACKGROUND: Kabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause. METHODS: Genomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools. RESULTS: We identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site. CONCLUSIONS: This study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management

    Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care

    Get PDF
    Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati

    Oro-facio-digital Syndrome, Type II

    No full text

    Prevalence of beckwith-wiedemann syndrome in North West of Italy

    No full text
    Although Beckwith-Wiedemann syndrome (BWS, OMIM #130650) is the most common genetic overgrowth disorder, data on its epidemiology are scanty and the estimates of its occurrence show wide variability. The aim of this study is to assess its prevalence in Piedmont Region (Italy). We included in the study all patients diagnosed with BWS born in Piedmont from 1997 to 2009 through a search in the Italian Registry for Rare Diseases. This source was further validated with data from the network of Regional Clinical Genetics services and surveys in extra-regional Clinical Genetics centres, laboratories and the Italian BWS patients association. All cases were further ascertained through physical exam, medical history and specific molecular tests. The search identified 46 clear-cut cases of BWS born across the 13-year period, providing a prevalence of 1:10 340 live births (95% confidence interval 1:7,752-13,698 live births). Among the 41 patients who underwent molecular tests, 70.7% were positive, showing hypomethylation of the IC2 imprinting center (29.3%), paternal chromosome 11 uniparental disomy (pUPD11, 24.4%), IC1 hypermethylation (14.6%), CDKN1c mutation (2.4%), whereas 29.3% had negative molecular tests. The study provides an approximate BWS prevalence of 1:10,000 live birth, the highest reported to date

    Prevalence of beckwith-wiedemann syndrome in North West of Italy

    No full text
    Although Beckwith-Wiedemann syndrome (BWS, OMIM #130650) is the most common genetic overgrowth disorder, data on its epidemiology are scanty and the estimates of its occurrence show wide variability. The aim of this study is to assess its prevalence in Piedmont Region (Italy). We included in the study all patients diagnosed with BWS born in Piedmont from 1997 to 2009 through a search in the Italian Registry for Rare Diseases. This source was further validated with data from the network of Regional Clinical Genetics services and surveys in extra-regional Clinical Genetics centres, laboratories and the Italian BWS patients association. All cases were further ascertained through physical exam, medical history and specific molecular tests. The search identified 46 clear-cut cases of BWS born across the 13-year period, providing a prevalence of 1:10 340 live births (95% confidence interval 1:7,752-13,698 live births). Among the 41 patients who underwent molecular tests, 70.7% were positive, showing hypomethylation of the IC2 imprinting center (29.3%), paternal chromosome 11 uniparental disomy (pUPD11, 24.4%), IC1 hypermethylation (14.6%), CDKN1c mutation (2.4%), whereas 29.3% had negative molecular tests. The study provides an approximate BWS prevalence of 1:10,000 live birth, the highest reported to date. © 2013 Wiley Periodicals, Inc

    Inherited and sporadic epimutations at the IGF2-H19 locus in beckwith-wiedemann syndrome and wilms' tumor

    No full text
    The parent-of-origin-dependent expression of IGF2 and H19 is controlled by the imprinting center 1 (IC1) consisting of a methylation-sensitive chromatin insulator. IC1 is normally methylated on the paternal chromosome and nonmethylated on the maternal chromosome. We found that 22 cases in a large cohort of patients affected by Beckwith-Wiedemann syndrome (BWS) had IC1 methylated on both parental chromosomes, resulting in biallelic activation of IGF2 and biallelic silencing of H19. These individuals had marked macrosomia and high incidence of Wilms' tumor. A subset of these patients had 1.4- to 1.8-kb deletions with hypermethylation of the remaining IC1 region and fully penetrant BWS phenotype when transmitted maternally. Another subset of individuals with IC1 hypermethylation had a similar clinical phenotype but no mutation in the local vicinity. All these cases were sporadic and in at least two families affected and unaffected members shared the same maternal IC1 allele but not the abnormal maternal epigenotype. Similarly, no IC1 deletion was detected in 10 nonsyndromic Wilms' tumors with IC1 hypermethylation. In conclusion, methylation defects at the IGF2-H19 locus can result from inherited mutations of the imprinting center and have high recurrence risk or arise independently from the sequence context and not transmitted to the progeny. Copyright © 2009 S. Karger AG, Basel

    Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour

    No full text
    The imprinted expression of the IGF2 and H19 genes is controlled by the Imprinting Centre 1 (IC1) at chromosome 11p15.5. This is a methylation-sensitive chromatin insulator that works by binding the zinc-finger protein CTCF in a parent-specific manner. Microdeletions abolishing some of the CTCF target sites (CTSs) of IC1 have been associated with the Beckwith-Wiedemann syndrome (BWS). However, the link between these mutations and the molecular and clinical phenotypes was debated. We have identified two novel families with IC1 deletions, in which individuals with the clinical features of the BWS are present in multiple generations. By analysing the methylation pattern at the IGF2 - H19 locus together with the clinical phenotypes in the individuals with maternal and those with paternal transmission of five different deletions, we demonstrate that maternal transmission of 1.4-1.8 kb deletions in the IC1 region co-segregates with the hypermethylation of the residual CTSs and BWS phenotype with complete penetrance, whereas normal phenotype is observed upon paternal transmission. Although gene expression could not be assayed in all cases, the methylation detected at the IGF2 DMR2 and H19 promoter suggests that IC1 hypermethylation is consistently associated with biallelic activation of IGF2 and biallelic silencing of H19. Comparison of these deletions with a 2.2 kb one previously reported by another group indicates that the spacing of the CTSs on the deleted allele is critical for the gain of the abnormal methylation and penetrance of the clinical phenotype. Furthermore, we observe that the hypermethylation resulting from the deletions is always mosaic, suggesting that the epigenetic defect at the IGF2-H19 locus is established post-zygotically and may cause body asymmetry and heterogeneity of the clinical phenotype. Finally, the IC1 microdeletions are associated with a high incidence of Wilms' tumour, making their molecular diagnosis particularly important for genetic counselling and tumour surveillance at follow-up. © 2007 Oxford University Press
    corecore