217 research outputs found

    Tensile Behavior of Low Density Thermally Bonded Nonwoven Material

    Get PDF
    A discontinuous and non-uniform microstructure of alow-density thermally bonded nonwoven materialdisplays in a complicated and unstable tensilebehavior. This paper reports uniaxial tensile tests of alow density thermally bonded nonwoven toinvestigate the effect of the specimen size and shapefactor, as well as the cyclic tensile loading conditionsemployed to investigate the deformational behaviorand performance of the nonwoven at differentloading stages. The experimental data are comparedwith results of microscopic image analysis and FEmodels

    Numerical assessment of residual formability in sheet metal products : towards design for sustainability

    Get PDF
    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them

    Environmental Resource - Economized Processes of Recycling Mineral Raw Materials of Complex Composition

    Get PDF
    The results of the studies on the justification of technological processes providing recycling of the warehoused ferruginous quartzites of complex composition and waste non-ferrous metals allowing to receive additional commodity products are given. The example of amphibole and biotite varieties of ferruginous quartzites of CMA and tailings of copper-zinc sulphide Ural ores determines the reasons of ineffective use of traditional technology solutions for recycling. The reasons of environmental hazards concerning varieties of technogenic mineral substances to the environment are identified. The presence in ferruginous quartzites complex composition of various silicates, carbonates and iron sulphides change their technological properties. So to get the iron concentrate from them suggests a new combination of technological operations performed in specially selected operating conditions. The specifics of the presence of mineral components in solid mineral wastes of nonferrous metal ores indicates the possibility of obtaining additional marketable products. With the use of laboratory multiscale modelling and physical methods of analysis regularities of variation of fractionation, separation and mineral concentration operations efficiency by varying its composition and the various influencing factors are identified. To improve the efficiency of the individual technological operations it is recommended to use different techniques, using physical and physico-chemical effects on the polymineral systems. The flow diagrams for the considered varieties of technogenic processing of mineral substances, allowing them to obtain standared quality products (metal-containing concentrates), and the results of their testing are submitted. The suggested technological solutions can reduce the amount of environmentally hazardous mineral substance, hosted in technogenic formations

    A micromechanism study of thermosonic gold wire bonding on aluminum pad

    No full text
    A micromechanism of thermosonic gold wire bonding was elaborated by examining its interfacial characteristics as a result of the bonding process, including the fragmentation of the native aluminum oxide layer on Al pads, and formation of initial intermetallic compounds IMCs. It is found that the existence of an approximately 5 nm thick native oxide layer on original Al pads has a significant effect on the bonding, and the nucleation of IMCs during the bonding process must overcome this relatively inert thin film. Bonding strength was fundamentally determined by the degree of fragmentation of the oxide films, through which the formation of IMCs can be initiated due to the direct contact of the metal surfaces to be bonded. The extent of fracture the oxide layer was strongly influenced by the level of ultrasonic power, as at its high level alumina fragmentation becomes pervasive resulting in contiguous alloy interfaces and robust bonds. The IMCs formed at the interfaces were identified as Al₄Al and AuAl₂ with a thickness of 150–300 nm. The formation mechanism of such IMCs was explained by the effective heat of formation theory.This research was funded as a PMI2 Project Grant No. RC 41 through the UK Department for Innovation, Universities and Skills DIUS

    Strength assessment of PET composite prosthetic sockets

    Get PDF
    open access articleA prosthesis is loaded by forces and torques exerted by its wearer, the amputee, and should withstand instances of peak loads without failure. Traditionally, strong prosthetic sockets were made using a composite with variety of reinforcing fibres such as glass, carbon, and kevlar. Amputees in less- resourced nations can lack access to composite prosthetic sockets due to their unavailability or prohibitive cost. Therefore, this study investigates the feasibility of polyethylene terephthalate (PET) fibre-reinforced composites as a low-cost sustainable composite for producing functional lower-limb prosthetic sockets. Two types of these composites were manufactured using woven and knitted fabric with a vacuum assisted resin transfer moulding (VARTM) process. For direct comparison purposes, traditional prosthetic-socket materials were also manufactured from laminated composite (glass-fibre reinforced (GFRP)) and monolithic thermoplastic (polypropylene (PP) and high-density polyethylene (HDPE)) were also manufactured. Dog-bone-shaped specimens were cut from flat laminates and monolithic thermoplastic to evaluate their mechanical properties following ASTM standards. The mechanical properties of PET-woven and PET-knitted composites were found to be have been demonstrated to be considerably superior to those of traditional socket materials such as PP and HDPE. All the materials were also tested in the socket form using a bespoke test rig reproducing forefoot loading according to the ISO standard 10328. The static structural test of sockets revealed that all met the target load-bearing capacity of 125 kg. Like GFRP, the PETW and PETK sockets demonstrated higher deformation and stiffness resistance than their monolithic counterparts made from PP and HDPE. As a result, it was concluded that the PET-based composite could replace monolithic socket materials in producing durable and affordable prostheses

    Analysis of nonlinear deformations and damage in CFRP textile laminates

    Get PDF
    Carbon fibre-reinforced polymer (CFRP) textile composites are widely used in aerospace, automotive and construction components and structures thanks to their relatively low production costs, higher delamination and impact strength. They can also be used in various products in sports industry. These products are usually exposed to different in-service conditions such as large bending deformation and multiple impacts. Composite materials usually demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure, in contrast to more traditional homogeneous structural materials like metals and alloys. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation, numerical simulations and microtomography analysis. This research deals with a deformation behaviour and damage in composite laminates linked to their quasi-static bending. Experimental tests are carried out to characterise the behaviour of woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit to study the deformation behaviour and damage in woven CFRP laminates. Multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. X-ray Micro-Computed Tomography (MicroCT) analysis is carried out to investigate internal damage mechanisms such as cracking and delaminations. The obtained results of simulations are in agreement with experimental data and MicroCT scans

    Relations between parameters of fracture processes on different scale levels

    Get PDF
    © 2018, Pleiades Publishing, Ltd. Abstract: The processes of ultrasonically-assisted drilling (UAD) and the dynamic tests on split Hopkinson pressure bar (SHPB), fracture in which is implemented at various structural-scale levels, are considered. The simulation of UAD based on the Hertz contact problem and the structural−time criterion is presented. The problem of using the value of the fracture incubation time and its linear size obtained from the tests on SHPB in the simulation is considered. A principle of equal power is used for converting the strength parameters into another structural−scale level. The theoretical curve obtained in the simulation is compared with the results of experiments on conventional drilling (CD) and UAD

    Optical properties of graphene-based materials in transparent polymer matrices

    Get PDF
    This paper was published in the journal, Applied Physics Letters [© American Institute of Physics]. It is also available at: http://dx.doi.org/10.1063/1.4961674Different aspects of graphene-based materials (GBMs) and GBM-nanocomposites have been investigated due to their intriguing features; one of these features is their transparency. Transparency of GBMs has been of an interest to scientists and engineers mainly with regard to electronic devices. In this study, optical transmittance of structural, purpose-made nanocomposites reinforced with GBMs was analyzed to lay a foundation for optical microstructural characterization of nanocomposites in future studies. Two main types of GBM reinforcements were studied, graphene oxide (GO) and graphite nanoplates (GNPs). The nanocomposites investigated are GO/poly(vinyl alcohol), GO/sodium alginate, and GNP/epoxy with different volume fractions of GBMs. Together with UV-visible spectrophotometry, image-processing-assisted micro and macro photography were used to assess the transparency of GBMs embedded in the matrices. The micro and macro photography methods developed were proven to be an alternative way of measuring light transmittance of semi-transparent materials. It was found that there existed a linear relationship between light absorbance and a volume fraction of GBMs embedded in the same type of polymer matrices, provided that the nanocomposites of interest had the same thicknesses. This suggests that the GBM dispersion characteristics in the same type of polymer are similar and any possible change in crystal structure of polymer due to different volumetric contents of GBM does not have an effect on light transmittance of the matrices. The study also showed that the same types of GBMs could display different optical properties in different matrix materials. The results of this study will help to develop practical microstructural characterization techniques for GBM-based nanocomposites
    corecore