1,988 research outputs found
Broken symmetries and pattern formation in two-frequency forced Faraday waves
We exploit the presence of approximate (broken) symmetries to obtain general
scaling laws governing the process of pattern formation in weakly damped
Faraday waves. Specifically, we consider a two-frequency forcing function and
trace the effects of time translation, time reversal and Hamiltonian structure
for three illustrative examples: hexagons, two-mode superlattices, and two-mode
rhomboids. By means of explicit parameter symmetries, we show how the size of
various three-wave resonant interactions depends on the frequency ratio m:n and
on the relative temporal phase of the two driving terms. These symmetry-based
predictions are verified for numerically calculated coefficients, and help
explain the results of recent experiments.Comment: 4 pages, 6 figure
Simultaneous IUE, EXOSAT and optical observations of the unusual AM Her type variable H058+608
Simultaneous observations of the AM Her type variable H0538+608 made with IUE, EXOSAT, and a 1.3 m ground based telescope, and subsequent optical spectrophotometry at high and low resolution are discussed. The X-ray and optical data show clear evidence of a 3.30 + or - 0.03 hr period. Three SWP spectra were taken outside of eclipse and during overlapping phase intervals. The UV spectra contain strong emission lines characteristic of this class of objects and a flat continuum which appears to be deficient, given the brightness of source at optical and X-ray wavelengths. There is evidence for intensity variations in emission lines, particularly C IV. The X-ray light curves for H0538+608 reveal behavior which may be related to irregularities in its accretion flow
Forcing function control of Faraday wave instabilities in viscous shallow fluids
We investigate the relationship between the linear surface wave instabilities
of a shallow viscous fluid layer and the shape of the periodic,
parametric-forcing function (describing the vertical acceleration of the fluid
container) that excites them. We find numerically that the envelope of the
resonance tongues can only develop multiple minima when the forcing function
has more than two local extrema per cycle. With this insight, we construct a
multi-frequency forcing function that generates at onset a non-trivial harmonic
instability which is distinct from a subharmonic response to any of its
frequency components. We measure the corresponding surface patterns
experimentally and verify that small changes in the forcing waveform cause a
transition, through a bicritical point, from the predicted harmonic
short-wavelength pattern to a much larger standard subharmonic pattern. Using a
formulation valid in the lubrication regime (thin viscous fluid layer) and a
WKB method to find its analytic solutions, we explore the origin of the
observed relation between the forcing function shape and the resonance tongue
structure. In particular, we show that for square and triangular forcing
functions the envelope of these tongues has only one minimum, as in the usual
sinusoidal case.Comment: 12 pages, 10 figure
JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response
Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling. Analysis of clonally derived JAK2V617F-positive erythroblasts from MPN patients also demonstrated impaired replication fork progression accompanied by increased levels of replication protein A (RPA)-containing foci. However, the associated intra-S checkpoint response was impaired in erythroblasts from polycythemia vera (PV) patients, but not in those from essential thrombocythemia (ET) patients. Moreover, inhibition of p53 in PV erythroblasts resulted in more gamma-H2Ax (γ-H2Ax)–marked double-stranded breaks compared with in like-treated ET erythroblasts, suggesting the defective intra-S checkpoint function seen in PV increases DNA damage in the context of attenuated p53 signaling. These results demonstrate oncogene-induced impairment of replication fork progression in primary cells from MPN patients, reveal unexpected disease-restricted differences in activation of the intra-S checkpoint, and have potential implications for the clonal evolution of malignancies
Super-lattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface
Standing wave patterns that arise on the surface of ferrofluids by (single
frequency) parametric forcing with an ac magnetic field are investigated
experimentally. Depending on the frequency and amplitude of the forcing, the
system exhibits various patterns including a superlattice and subharmonic
rhombuses as well as conventional harmonic hexagons and subharmonic squares.
The superlattice arises in a bicritical situation where harmonic and
subharmonic modes collide. The rhombic pattern arises due to the non-monotonic
dispersion relation of a ferrofluid
Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection
Motivated by experimental observations of exotic standing wave patterns in
the two-frequency Faraday experiment, we investigate the role of normal form
symmetries in the pattern selection problem. With forcing frequency components
in ratio m/n, where m and n are co-prime integers, there is the possibility
that both harmonic and subharmonic waves may lose stability simultaneously,
each with a different wavenumber. We focus on this situation and compare the
case where the harmonic waves have a longer wavelength than the subharmonic
waves with the case where the harmonic waves have a shorter wavelength. We show
that in the former case a normal form transformation can be used to remove all
quadratic terms from the amplitude equations governing the relevant resonant
triad interactions. Thus the role of resonant triads in the pattern selection
problem is greatly diminished in this situation. We verify our general results
within the example of one-dimensional surface wave solutions of the
Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a
1:2 spatial resonance takes the place of a resonant triad in our investigation.
We find that when the bifurcating modes are in this spatial resonance, it
dramatically effects the bifurcation to subharmonic waves in the case of
forcing frequencies are in ratio 1/2; this is consistent with the results of
Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies
are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the
presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late
Pattern formation in 2-frequency forced parametric waves
We present an experimental investigation of superlattice patterns generated
on the surface of a fluid via parametric forcing with 2 commensurate
frequencies. The spatio-temporal behavior of 4 qualitatively different types of
superlattice patterns is described in detail. These states are generated via a
number of different 3--wave resonant interactions. They occur either as
symmetry--breaking bifurcations of hexagonal patterns composed of a single
unstable mode or via nonlinear interactions between the two primary unstable
modes generated by the two forcing frequencies. A coherent picture of these
states together with the phase space in which they appear is presented. In
addition, we describe a number of new superlattice states generated by 4--wave
interactions that arise when symmetry constraints rule out 3--wave resonances.Comment: The paper contains 34 pages and 53 figures and provides an extensive
review of both the theoretical and experimental work peformed in this syste
Survival and Functional Outcomes After Hip Fracture Among Nursing Home Residents
Importance
Little is known regarding outcomes after hip fracture among long-term nursing home residents.
Objective
To describe patterns and predictors of mortality and functional decline in activities of daily living (ADLs) among nursing home residents after hip fracture.
Design, Setting, and Participants
Retrospective cohort study of 60 111 Medicare beneficiaries residing in nursing homes who were hospitalized with hip fractures between July 1, 2005, and June 30, 2009.
Main Outcomes and Measures
Data sources included Medicare claims and the Nursing Home Minimum Data Set. Main outcomes included death from any cause at 180 days after fracture and a composite outcome of death or new total dependence in locomotion at the latest available assessment within 180 days. Additional analyses described within-residents changes in function in 7 ADLs before and after fracture.
Results
Of 60 111 patients, 21 766 (36.2%) died by 180 days after fracture; among patients not totally dependent in locomotion at baseline, 53.5% died or developed new total dependence within 180 days. Within individual patients, function declined substantially after fracture across all ADL domains assessed. In adjusted analyses, the greatest decreases in survival after fracture occurred with age older than 90 years (vs ≤75 years: hazard ratio [HR], 2.17; 95% CI, 2.09-2.26 [P \u3c .001]), nonoperative fracture management (vs internal fixation: HR for death, 2.08; 95% CI, 2.01-2.15 [P \u3c .001]), and advanced comorbidity (Charlson score of ≥5 vs 0: HR, 1.66; 95% CI, 1.58-1.73 [P \u3c .001]). The combined risk of death or new total dependence in locomotion within 180 days was greatest among patients with very severe cognitive impairment (vs intact cognition: relative risk [RR], 1.66; 95% CI, 1.56-1.77 [P \u3c .001]), patients receiving nonoperative management (vs internal fixation: RR, 1.48; 95% CI, 1.45-1.51 [P \u3c .001]), and patients older than 90 years (vs ≤75 years: RR, 1.42; 95% CI, 1.37-1.46 [P \u3c .001]).
Conclusions and Relevance
Survival and functional outcomes are poor after hip fracture among nursing home residents, particularly for patients receiving nonoperative management, the oldest old, and patients with multiple comorbidities and advanced cognitive impairment. Care planning should incorporate appropriate prognostic information related to outcomes in this population
Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis.
In June 1999, the Association of British Neurologists (ABN) first published guidelines for the use of the licensed multiple sclerosis (MS) disease-modifying treatments (at that time β-interferon and glatiramer acetate). The guidelines were revised in 2001 and have been periodically updated since then. In 2002, following the negative assessment of these treatments by the National Institute for Health and Care Excellence (NICE), the MS risk-sharing scheme started, in which patients eligible according to the 2001 ABN guidelines were provided with treatment funded through the UK National Health Service (NHS), and monitored annually for up to 10 years.1 Recruitment to the risk-sharing scheme cohort is complete. Pending a future final evaluation, the UK Department of Health's instruction to NHS funders remains in place: that patients who fulfil the ABN criteria should continue to receive treatment funded through the NHS. The British neurological community has fully accepted the risk-sharing scheme for prescribing β-interferon and glatiramer acetate. Approximately 70 ‘treating centres’ have recruited >5000 patients between 2002 and 2005, and these have been monitored annually for 10 years; many more patients have received these treatments since 2005. The ABN published revised guidelines in 2007, and then again in 2009, following the licensing of natalizumab and mitoxantrone. This 2015 revised guideline replaces former versions. It includes all newly approved or licensed treatments for MS and represents a consensus concerning their use. These guidelines will require future revision as other treatments receive approval (eg, daclizumab and ocrelizumab): we suggest they are reviewed after an interval of no longer than 12 months. The guideline is not intended to provide a complete description of the possible complications and monitoring of disease-modifying treatments in MS; we refer prescribing neurologists to the relevant summaries of product characteristics.PostprintPeer reviewe
- …