979 research outputs found

    Resumptive Repetition?introduction to a Universal Discourse Feature

    Full text link
    When repetition is used to resume a previous topic after a digression, interruption or some other interlude, then we can call this ?resumptive repetition?. The focus of this paper introduces resumptive repetition as a leading cognitive device used for topic continuity in the environment of digressions. Resumptive repetition is an important universal discourse feature because it is a cognitive part of human language that ?wraps around? or ?encapsulates? the syntax of any language. It is one of the few features of language that transparently shows the human mind working the same way cross-linguistically in the area of topic continuity

    Neutrino Electromagnetic Form Factors Effect on the Neutrino Cross Section in Dense Matter

    Full text link
    The sensitivity of the differential cross section of the interaction between neutrino-electron with dense matter to the possibly nonzero neutrino electromagnetic properties has been investigated. Here, the relativistic mean field model inspired by effective field theory has been used to describe non strange dense matter, both with and without the neutrino trapping. We have found that the cross section becomes more sensitive to the constituent distribution of the matter, once electromagnetic properties of the neutrino are taken into account. The effects of electromagnetic properties of neutrino on the cross section become more significant for the neutrino magnetic moment mu_nu > 10^{-10} mu_B and for the neutrino charge radius R > 10^{-5} MeV^{-1}.Comment: 24 pages, 10 figures, submitted to Physical Review

    Isovector Channel Role of Relativistic Mean Field Models in the Neutrino Mean Free Path

    Full text link
    An improvement in the treatment of the isovector channel of relativistic mean field (RMF) models based on effective field theory (E-RMF) is suggested, by adding an isovector scalar (delta) meson and using a similar procedure to the one used by Horowitz and Piekarewicz to adjust the isovector-vector channel in order to achieve a softer density dependent symmetry energy of the nuclear matter at high density. Their effects on the equation of state (EOS) at high density and on the neutrino mean free path (NMFP) in neutron stars are discussed.Comment: 20 pages, 8 figure

    Anisotropic ferromagnetism in carbon doped zinc oxide from first-principles studies

    Full text link
    A density functional theory study of substitutional carbon impurities in ZnO has been performed, using both the generalized gradient approximation (GGA) and a hybrid functional (HSE06) as exchange-correlation functional. It is found that the non-spinpolarized CZn_\mathrm{Zn} impurity is under almost all conditions thermodynamically more stable than the CO_\mathrm{O} impurity which has a magnetic moment of 2μB2\mu_{\mathrm{B}}, with the exception of very O-poor and C-rich conditions. This explains the experimental difficulties in sample preparation in order to realize d0d^{0}-ferromagnetism in C-doped ZnO. From GGA calculations with large 96-atom supercells, we conclude that two CO_\mathrm{O}-CO_\mathrm{O} impurities in ZnO interact ferromagnetically, but the interaction is found to be short-ranged and anisotropic, much stronger within the hexagonal abab-plane of wurtzite ZnO than along the c-axis. This layered ferromagnetism is attributed to the anisotropy of the dispersion of carbon impurity bands near the Fermi level for CO_{\mathrm{O}} impurities in ZnO. From the calculated results, we derive that a CO_{\mathrm{O}} concentration between 2% and 6% should be optimal to achieve d0d^{0}-ferromagnetism in C-doped ZnO.Comment: 9 pages, 7 figure

    Sum Rule Approach to the Isoscalar Giant Monopole Resonance in Drip Line Nuclei

    Get PDF
    Using the density-dependent Hartree-Fock approximation and Skyrme forces together with the scaling method and constrained Hartree-Fock calculations, we obtain the average energies of the isoscalar giant monopole resonance. The calculations are done along several isotopic chains from the proton to the neutron drip lines. It is found that while approaching the neutron drip line, the scaled and the constrained energies decrease and the resonance width increases. Similar but smaller effects arise near the proton drip line, although only for the lighter isotopic chains. A qualitatively good agreement is found between our sum rule description and the presently existing random phase approximation results. The ability of the semiclassical approximations of the Thomas-Fermi type, which properly describe the average energy of the isoscalar giant monopole resonance for stable nuclei, to predict average properties for nuclei near the drip lines is also analyzed. We show that when hbar corrections are included, the semiclassical estimates reproduce, on average, the quantal excitation energies of the giant monopole resonance for nuclei with extreme isospin values.Comment: 31 pages, 12 figures, revtex4; some changes in text and figure

    Atomic Parity Non-Conservation, Neutron Radii, and Effective Field Theories of Nuclei

    Get PDF
    Accurately calibrated effective field theories are used to compute atomic parity non-conserving (APNC) observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron skin of heavy nuclei. While the neutron skin is strongly correlated to a large number of physical observables, in this contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-isovector coupling constant to the effective Lagrangian generates a wide range of values for the neutron skin of heavy nuclei without compromising the success of the model in reproducing well constrained nuclear observables. Earlier studies have suggested that the use of isotopic ratios of APNC observables may eliminate their sensitivity to atomic structure. This leaves nuclear structure uncertainties as the main impediment for identifying physics beyond the standard model. We establish that uncertainties in the neutron skin of heavy nuclei are at present too large to measure isotopic ratios to better than the 0.1% accuracy required to test the standard model. However, we argue that such uncertainties will be significantly reduced by the upcoming measurement of the neutron radius in 208Pb at the Jefferson Laboratory.Comment: 24 pages, 6 figures, revtex4; one figure adde

    Agricultural growth linkages in Sub-Saharan Africa:

    Get PDF
    How much extra net income growth can be had in rural areas of Africa by increasing the spending power of local households? The answer depends on how rural households spend increments to income, whether the items desired can be imported to the local area in response to increased demand, and, if not, whether increased demand will lead to new local production or simply to price rises. For every dollar in new farm income earned, at least one additional dollar could be realized from growth multipliers, according to Agricultural Growth Linkages in Sub-Saharan Africa.Income Rural areas Africa., Agricultural development Africa., Agricultural policy Economic aspects., Households Zimbabwe., Social accounting., Africa sub-Saharan,

    Superheavy nuclei in relativistic effective Lagrangian model

    Get PDF
    Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures beyond Z=82 and N=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps, and the shell correction energy. The effective Lagrangian model predicts N=172 and Z=120 and N=258 and Z=120 as spherical doubly magic superheavy nuclei, whereas N=184 and Z=114 show some magic character depending on the parameter set. The magicity of a particular neutron (proton) number in the analyzed mass region is found to depend on the number of protons (neutrons) present in the nucleus.Comment: 26 pages, REVTeX, 10 ps figures; changed conten

    Extended States in a One-dimensional Generalized Dimer Model

    Full text link
    The transmission coefficient for a one dimensional system is given in terms of Chebyshev polynomials using the tight-binding model. This result is applied to a system composed of two impurities located between NN sites of a host lattice. It is found that the system has extended states for several values of the energy. Analytical expressions are given for the impurity site energy in terms of the electron's energy. The number of resonant states grows like the number of host sites between the impurities. This property makes the system interesting since it is a simple task to design a configuration with resonant energy very close to the Fermi level EFE_F.Comment: 4 pages, 3 figure
    corecore