182 research outputs found

    Relativistic gyratons in asymptotically AdS spacetime

    Full text link
    We study the gravitational field of a spinning radiation beam-pulse (a gyraton) in a D-dimensional asymptotically AdS spacetime. It is shown that the Einstein equations for such a system reduce to a set of two linear equations in a (D-2)-dimensional space. By solving these equations we obtain a metric which is an exact solution of gravitational equations with the (negative) cosmological constant. The explicit metrics for 4D and 5D gyratons in asymptotically AdS spacetime are given and their properties are discussed.Comment: 10 page

    Exploring AdS Waves Via Nonminimal Coupling

    Full text link
    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a non-perturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity.Comment: 26 pages, 1 figure. Minor change

    Gyratons on Melvin spacetime

    Full text link
    We present and analyze new exact gyraton solutions of algebraic type II on a background which is static, cylindrically symmetric Melvin universe of type D. For a vanishing electromagnetic field it reduces to previously studied gyratons on Minkowski background. We demonstrate that the solutions are member of a more general family of the Kundt spacetimes. We show that the Einstein equations reduce to a set of mostly linear equations on a transverse 2-space and we discuss the properties of polynomial scalar curvature invariants which are generally non-constant but unaffected by the presence of gyratons.Comment: 15 pages, no figures, journal version extended by appendices B and

    Deeper discussion of Schr\"odinger invariant and Logarithmic sectors of higher-curvature gravity

    Get PDF
    The aim of this paper is to explore D-dimensional theories of pure gravity whose space of solutions contains certain class of AdS-waves, including in particular Schrodinger invariant spacetimes. This amounts to consider higher order theories, and the natural case to start with is to analyze generic square-curvature corrections to Einstein-Hilbert action. In this case, the Schrodinger invariant sector in the space of solutions arises for a special relation between the coupling constants appearing in the action. On the other hand, besides the Schrodinger invariant configurations, logarithmic branches similar to those of the so-called Log-gravity are also shown to emerge for another special choice of the coupling constants. These Log solutions can be interpreted as the superposition of the massless mode of General Relativity and two scalar modes that saturate the Breitenlohner-Freedman bound (BF) of the AdS space on which they propagate. These solutions are higher-dimensional analogues of those appearing in three-dimensional massive gravities with relaxed AdS_3 asymptotic. Other sectors of the space of solutions of higher-curvature theories correspond to oscillatory configurations, which happen to be below the BF bound. Also, there is a fully degenerated sector, for which any wave profile is admitted. We comment on the relation between this degeneracy and the non-renormalization of the dynamical exponent of the Schrodinger spaces. Our analysis also includes more general gravitational actions with non-polynomial corrections consisting of arbitrary functions of the square-curvature invariants. The same sectors of solutions are shown to exist for this more general family of theories. We finally consider the Chern-Simons modified gravity in four dimensions, for which we derive both the Schrodinger invariant as well as the logarithmic sectors.Comment: This paper is dedicated to the memory of Laurent Houar

    Local freedom in the gravitational field

    Full text link
    In a cosmological context, the electric and magnetic parts of the Weyl tensor, E_{ab} and H_{ab}, represent the locally free curvature - i.e. they are not pointwise determined by the matter fields. By performing a complete covariant decomposition of the derivatives of E_{ab} and H_{ab}, we show that the parts of the derivative of the curvature which are locally free (i.e. not pointwise determined by the matter via the Bianchi identities) are exactly the symmetrised trace-free spatial derivatives of E_{ab} and H_{ab} together with their spatial curls. These parts of the derivatives are shown to be crucial for the existence of gravitational waves.Comment: New results on gravitational waves included; new references added; revised version (IOP style) to appear Class. Quantum Gra

    Inhomogeneous High Frequency Expansion-Free Gravitational Waves

    Full text link
    We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.Comment: 18 pages, Latex file, accepted for publication in Physical Review

    The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

    Get PDF
    The finiteness requirement for Euclidean Einstein gravity is shown to be so stringent that only the flat metric is allowed. We examine counterterms in 4D and 6D Ricci-flat manifolds from general invariance arguments.Comment: 15 pages, Introduction is improved, many figures(eps

    PP-waves in AdS Gauged Supergravities and Supernumerary Supersymmetry

    Get PDF
    Purely gravitational pp-waves in AdS backgrounds are described by the generalised Kaigorodov metrics, and they generically preserve 1/4 of the maximum supersymmetry allowed by the AdS spacetimes. We obtain 1/2 supersymmetric purely gravitational pp-wave solutions, in which the Kaigorodov component is set to zero. We construct pp-waves in AdS gauged supergravities supported by a vector field. We find that the solutions in D=4 and D=5 can then preserve 1/2 of the supersymmetry. Like those in ungauged supergravities, the supernumerary supersymmetry imposes additional constraints on the harmonic function associated with the pp-waves. These new backgrounds provide interesting novel features of the supersymmetry enhancement for the dual conformal field theory in the infinite-momentum frame.Comment: Latex, 27 pages, minor typos corrected and reference added, to appear in Phys. Rev.

    Brane Waves

    Full text link
    In brane-world cosmology gravitational waves can propagate in the higher dimensions (i.e., in the `bulk'). In some appropriate regimes the bulk gravitational waves may be approximated by plane waves. We systematically study five-dimensional gravitational waves that are algebraically special and of type N. In the most physically relevant case the projected non-local stress tensor on the brane is formally equivalent to the energy-momentum tensor of a null fluid. Some exact solutions are studied to illustrate the features of these branes; in particular, we show explicity that any plane wave brane can be embedded into a 5-dimensional Siklos spacetime. More importantly, it is possible that in some appropriate regime the bulk can be approximated by gravitational plane waves and thus may act as initial conditions for the gravitational field in the bulk (thereby enabling the field equations to be integrated on the brane).Comment: 9 pages v3:revised version, to appear in CQ

    Non-expanding impulsive gravitational waves

    Get PDF
    We investigate a class of impulsive gravitational waves which propagate either in Minkowski or in the (anti-)de Sitter background. These waves are constructed as impulsive members of the Kundt class P(Λ)P(\Lambda) of non-twisting, non-expanding type N solutions of vacuum Einstein equations with a cosmological constant Λ\Lambda. We show that the only non-trivial waves of this type in Minkowski spacetime are impulsive pp-waves. For Λ≠0\Lambda\not=0 we demonstrate that the canonical subclasses of P(Λ)P(\Lambda), which are invariantly different for smooth profiles, are all locally equivalent for impulsive profiles. Also, we present coordinate system for these impulsive solutions which is explicitly continuous.Comment: 12 pages, to appear in Class. Quantum Gra
    • …
    corecore