6 research outputs found

    Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network

    Get PDF
    This paper aims at assessing the impact of retrofitting an existing, 730 MWe, coal-fired power plant into a biomass-fired combined heat and power (CHP) plant on its energetic and exergetic performances. A comprehensive thermodynamic model of the power plant was developed and validated against field data, resulting in less than 1% deviation between the model and the measurements for the main process parameters. The validated model was then used to predict the behaviour of the biomass CHP after retrofitting. The modelled CHP unit is coupled to a steam-explosion biomass upgrading plant, a biorefinery process, and a high-temperature heat network. 13 scenarios were studied. At constant boiler load, delivering heat to the considered heat clients can increase the total energy efficiency of the plant from 44% (electricity only) to 64%, while the total exergy efficiency decreases from 39% to 35%. A total energy efficiency of 67% could be reached by lowering the network temperature from 120∘C to 70∘C. Identifying the needed heat clients could, however, represent a limiting factor to reach such high efficiencies. For a constant power demand, increasing the boiler load from 80 to 100% in order to provide additional heat makes the total energy efficiency increase from 43% to 55%, while the total exergy efficiency decreases from 39% to 36%.publishedVersio

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Uncertainty Quantification for Thermodynamic Simulations with High-Dimensional Input Spaces Using Sparse Polynomial Chaos Expansion: Retrofit of a Large Thermal Power Plant

    No full text
    The assessment of the future thermodynamics performance of a retrofitted heat and power production unit is prone to many uncertainties due to the large number of parameters involved in the modeling of all its components. To carry out uncertainty quantification analysis, alternatives to the traditional Monte Carlo method must be used due to the large stochastic dimension of the problem. In this paper, sparse polynomial chaos expansion (SPCE) is applied to the retrofit of a large coal-fired power plant into a biomass-fired combined heat and power unit to quantify the main drivers and the overall uncertainty on the plant’s performance. The thermodynamic model encompasses over 180 components and 1500 parameters. A methodology combining the use of SPCE and expert judgment is proposed to narrow down the sources of uncertainty and deliver reliable probability distributions for the main key performance indicators (KPIs). The impact of the uncertainties on each input parameter vary with the considered KPI and its assessment through the computation of Sobol’ indices. For both coal and biomass operations, the most impactful input parameters are the composition of the fuel and its heating value. The uncertainty on the performance and steam quality parameters is not much affected by the retrofit. Key furnace parameters exhibit a skewed probability distribution with large uncertainties, which is a strong attention point in terms of boiler operation and maintenance

    Uncertainty Quantification for Thermodynamic Simulations with High-Dimensional Input Spaces Using Sparse Polynomial Chaos Expansion: Retrofit of a Large Thermal Power Plant

    No full text
    The assessment of the future thermodynamics performance of a retrofitted heat and power production unit is prone to many uncertainties due to the large number of parameters involved in the modeling of all its components. To carry out uncertainty quantification analysis, alternatives to the traditional Monte Carlo method must be used due to the large stochastic dimension of the problem. In this paper, sparse polynomial chaos expansion (SPCE) is applied to the retrofit of a large coal-fired power plant into a biomass-fired combined heat and power unit to quantify the main drivers and the overall uncertainty on the plant’s performance. The thermodynamic model encompasses over 180 components and 1500 parameters. A methodology combining the use of SPCE and expert judgment is proposed to narrow down the sources of uncertainty and deliver reliable probability distributions for the main key performance indicators (KPIs). The impact of the uncertainties on each input parameter vary with the considered KPI and its assessment through the computation of Sobol’ indices. For both coal and biomass operations, the most impactful input parameters are the composition of the fuel and its heating value. The uncertainty on the performance and steam quality parameters is not much affected by the retrofit. Key furnace parameters exhibit a skewed probability distribution with large uncertainties, which is a strong attention point in terms of boiler operation and maintenance.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore