4,177 research outputs found

    Topological Quantum Phase Transition in 5dd Transition Metal Oxide Na2_2IrO3_3

    Get PDF
    We predict a quantum phase transition from normal to topological insulators in the 5dd transition metal oxide Na2_2IrO3_3, where the transition can be driven by the change of the long-range hopping and trigonal crystal field terms. From the first-principles-derived tight-binding Hamiltonian we determine the phase boundary through the parity analysis. In addition, our first-principles calculations for Na2_2IrO3_3 model structures show that the interlayer distance can be an important parameter for the existence of a three-dimensional strong topological insulator phase. Na2_2IrO3_3 is suggested to be a candidate material which can have both a nontrivial topology of bands and strong electron correlations

    On the origin of the hump structure in the in-plane optical conductivity of high Tc cuprates based on a SU(2) slave-boson theory

    Full text link
    An improved version of SU(2) slave-boson approach is applied to study the in-plane optical conductivity of the two dimensional systems of high Tc cuprates. We investigate the role of fluctuations of both the phase and amplitude of order parameters on the (Drude) peak-dip-hump structure in the in-plane conductivity as a function of hole doping concentration and temperature. The mid-infrared(MIR) hump in the in-plane optical conductivity is shown to originate from the antiferromagnetic spin fluctuations of short range(the amplitude fluctuations of spin singlet pairing order parameters), which is consistent with our previous U(1) study. However the inclusion of both the phase and amplitude fluctuations is shown to substantially improve the qualitative feature of the optical conductivity by showing substantially reduced Drude peak widths for entire doping range. Both the shift of the hump position to lower frequency and the growth of the hump peak height with increasing hole concentration is shown to be consistent with observations.Comment: 7 pages, 6 figure

    Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages

    Get PDF
    Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans- glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis- glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides

    Large X-ray Flares from LMC X-4: Discovery of Milli-hertz Quasi-periodic Oscillations and QPO-modulated Pulsations

    Get PDF
    We report the discovery of milli-hertz (mHz) quasi-periodic oscillations (QPOs) and QPO-modulated pulsations during large X-ray flares from the high-mass X-ray binary pulsar LMC X-4 using data from the Rossi X-Ray Timing Explorer (RXTE). The lightcurves of flares show that, in addition to ~74 mHz coherent pulsations, there exist two more time-varying temporal structures at frequencies of ~0.65-1.35 and ~2-20 mHz. These relatively long-term structures appear in the power density spectra as mHz QPOs and as well-developed sidebands around the coherent pulse frequency as well, indicating that the amplitudes of the coherent pulsation is modulated by those of the mHz QPOs. One interesting feature is that, while the first flare shows symmetric sidebands around the coherent pulse frequency, the second flare shows significant excess emission in the lower-frequency sidebands due to the ~2-20 mHz QPOs. We discuss the origin of the QPOs using a combination of the beat-frequency model and a modified version of the Keplerian-frequency model. According to our discussion, it seems to be possible to attribute the origin of the ~0.65-1.35 and ~2-20 mHz QPOs to the beating between the rotational frequency of the neutron star and the Keplerian frequency of large accreting clumps near the corotation radius and to the orbital motion of clumps at Keplerian radii of 2-10 times 10^9 cm, respectively.Comment: 12 pages, including 4 figures; accepted by ApJ Letter

    The Bell Laboratories (13)CO Survey: Longitude-Velocity Maps

    Full text link
    A survey is presented of the Galactic plane in the J=1-0 transition of (13)CO. About 73,000 spectra were obtained with the 7 m telescope at Bell Laboratories over a ten-year period. The coverage of survey is (l, b) = (-5 to 117, -1 to +1), or 244 square degrees, with a grid spacing of 3' for |b| < 0.5, and a grid spacing of 6' for |b| > 0.5. The data presented here have been resampled onto a 3' grid. For 0.68 km/s channels, the rms noise level of the survey is 0.1 K on the TR∗T_R^* scale. The raw data have been transformed into FITS format, and all the reduction processes, such as correcting for emission in the reference positions, baseline removal and interpolation were conducted within IRAF using the FCRAO task package and additional programs. The reduced data are presented here in the form of longitude-velocity color maps at each latitude. These data allow identification and classification of molecular clouds with masses in excess of ~ 1,000 solar masses throughout the first quadrant of the Galaxy. Spiral structure is manifested by the locations of the largest and brightest molecular clouds.Comment: 23 pages, 7 figures, ApJS submitted (out of 41 frames of Figure4, only one is included becaue of size limit

    Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.

    Get PDF
    BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP
    • 

    corecore