78 research outputs found

    Not Available

    Get PDF
    Not AvailableThis reports contains the research work undertaken under NICRA project during the period February 2015 to March 2019Not Availabl

    Livestock disease risk forewarning bulletin October 2022

    Get PDF
    Not AvailableThis bulletin forecasts the livestock diseases two months in advance for the benefit of the livestock farmers and state animal husbandry departments.Not Availabl

    Not Available

    Get PDF
    Not AvailableThe livestock diseases forewarning bulletin will forecast the occurrence of the livestock diseases at district level in advance of two months to take necessary preventive measures by the State Animal Husbandry Departments in India.Not Availabl

    Research Article A New Informatics Framework for Evaluating the Codon Usage Metrics, Evolutionary Models and Phylogeographic Reconstruction of Tomato Yellow Leaf Curl Virus (TYLCV) in Different Regions of Asian Countries

    Get PDF
    Not AvailableTomato yellow leaf curl virus (TYLCV) is a major devastating viral disease, majorly affecting the tomato production globally. The disease is majorly transmitted by the Whitefly. The Begomovirus (TYLCV) having a six major protein coding genes, among them the C1/AC1 is evidently associated with viral replication. Owing to immense role of C1/AC1 gene, the present study is an initial effort to elucidate the factors shaping the codon usage bias and evolutionary pattern of TYLCV-C1/AC1 gene in five major Asian countries. Based on publicly available nucleotide sequence data the Codon usage pattern, Evolutionary and Phylogeographic reconstruction was carried out. The study revealed the presence of significant variation between the codon bias indices in all the selected regions. Implying that the codon usage pattern indices (eNC, CAI, RCDI, GRAVY, Aromo) are seriously affected by selection and mutational pressure, taking a supremacy in shaping the codon usage bias of viral gene. Further, the tMRCA age was 1853, 1939, 1855, 1944, 1828 for China, India, Iran, Oman and South Korea, respectively for TYLCV-C1/AC1 gene. The integrated analysis of Codon usage bias, Evolutionary rate and Phylogeography analysis in viruses signifies the positive role of selection and mutational pressure among the selected regions for TYLCV (C1/AC1) gene.Not Availabl

    Molecular and Functional Characterization of the Odorant Receptor2 (OR2) in the Tiger Mosquito Aedes albopictus

    Get PDF
    In mosquitoes, the olfactory system plays a crucial role in many types of behavior, including nectar feeding, host preference selection and oviposition. Aedes albopictus, known also as the tiger mosquito, is an anthropophilic species, which in the last few years, due to its strong ecological plasticity, has spread throughout the world. Although long considered only a secondary vector of viruses, the potential of its vector capacity may constitute a threat to public health. Based on the idea that an improved understanding of the olfactory system of mosquitoes may assist in the development of control methods that interfere with their behavior, we have undertaken a study aimed at characterizing the A. albopictus Odorant Receptors. Here we report the identification, cloning and functional characterization of the AalOR2 ortholog, that represents the first candidate member of the odorant receptor (OR) family of proteins from A. albopictus. AalOR2 is expressed in the larval heads and antennae of adults. Our data indicate that A. albopictus OR2 (AalOR2) shares a high degree of identity with other mosquito OR2 orthologs characterized to date, confirming that OR2 is one of the most conserved mosquito ORs. Our data indicate that AalOR2 is narrowly tuned to indole, and inhibited by (-)-menthone. In agreement with this results, these two compounds elicit two opposite effects on the olfactory-based behavior of A. albopictus larvae, as determined through a larval behavioral assay. In summary, this work has led to the cloning and de-orphaning of the first Odorant Receptor in the tiger mosquito A. albopictus. In future control strategies this receptor may be used as a potential molecular target

    Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    Get PDF
    Background: DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied, yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs). Methodology/Principal Findings: Here we characterize the action of these repellents on two Aedes aegypti ORs, AaOR2 and AaOR8, individually co-expressed with the common co-receptor AaOR7 in Xenopus oocytes; these ORs are respectively activated by the odors indole (AaOR2) and (R)-(2)-1-octen3-ol (AaOR8), odorants used to locate oviposition sites and host animals. In the absence of odorants, DEET activates AaOR2 but not AaOR8, while 2-U activates AaOR8 but not AaOR2; IR3535 and Picaridin do not activate these ORs. In the presence of odors, DEET strongly inhibits AaOR8 but not AaOR2, while 2-U strongly inhibits AaOR2 but not AaOR8; IR3535 and Picaridin strongly inhibit both ORs. Conclusions/Significance: These data demonstrate that repellents can act as olfactory agonists or antagonists, thus modulating OR activity, bringing concordance to conflicting models

    Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemosensory signal transduction guides the behavior of many insects, including <it>Anopheles gambiae</it>, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male <it>An. gambiae</it>.</p> <p>Results</p> <p>We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree.</p> <p>Conclusions</p> <p>These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male <it>An. gambiae</it>. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.</p
    corecore