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SUMMARY

In pursuit of food, hungry animalsmobilize significant
energy resources and overcome exhaustion and
fear. How need and motivation control the decision
to continue or change behavior is not understood.
Using a single fly treadmill, we show that hungry flies
persistently track a food odor and increase their
effort over repeated trials in the absence of reward
suggesting that need dominates negative experi-
ence.We further show that odor tracking is regulated
by two mushroom body output neurons (MBONs)
connecting theMB to the lateral horn. TheseMBONs,
together with dopaminergic neurons and Dop1R2
signaling, control behavioral persistence. Con-
versely, an octopaminergic neuron, VPM4, which
directly innervates one of theMBONs, acts as a brake
on odor tracking by connecting feeding and olfac-
tion. Together, our data suggest a function for
the MB in internal state-dependent expression of
behavior that can be suppressed by external inputs
conveying a competing behavioral drive.

INTRODUCTION

Flexibility is an important factor in an ever in-flux environment,

where scarcity and competition are the norm. Without persis-

tence to achieve its goals, however, an animal’s strive to secure

food, protect its offspring, or maintain its social status is in jeop-

ardy. Therefore, sensory cues related to food or danger often

elicit strong impulses. However, these impulses must be strictly

controlled to allow for coherent goal-directed behavior and to

permit behavioral transitions when sensible. Inhibition of antag-

onistic behavioral drives at the cognitive and physiological level
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has been proposed as amajor task of a nervous system (Bari and

Robbins, 2013). Which sensory cues and ultimately which be-

haviors are prioritized and win depends on the animal’s

metabolic state, internal motivation, and current behavioral

context. How this is implemented at the level of individual neu-

rons, circuit motifs, and mechanisms remains an important

open question.

Like most animals, energy-deprived flies prioritize food

seeking and feeding behavior. To find food, flies can follow olfac-

tory or visual cues over long distances (see for instance Álvarez-

Salvado et al., 2018; Root et al., 2011). External gustatory cues

provide information about the type and quality of the eventually

encountered food. However, only internal nutrient levels will pro-

vide reliable feedback about the quality and quantity of a food

source and ultimately suppress food-seeking behaviors (Cor-

rales-Carvajal et al., 2016; Dethier and Goldrich-Rachman,

1976; Mann et al., 2013; Thoma et al., 2016). Therefore, food

odor, the taste of food, and post-ingestive internal feedback sig-

nals induce sequential and partly antagonistic behaviors (Mann

et al., 2013; Thoma et al., 2016). Interestingly, chemosensory

and internal feedback systems typically mediated by distinct

neuromodulators appear to converge in the mushroom body

(MB) (Cohn et al., 2015; Kim et al., 2017; Krashes et al., 2009;

Lewis et al., 2015; Tsao et al., 2018). How neurons and neural cir-

cuits signal and combine external and internal cues to maintain

or suppress competing behavioral drives is not well understood.

In mammals, norepinephrine (NE) released by a brain stem nu-

cleus, the locus coeruleus, has been implicated in controlling the

balance between persistence and action selection (Berridge and

Waterhouse, 2003; Schwarz and Luo, 2015). The potential func-

tional counterpart of NE in insects could be octopamine (OA).

Flies lacking OA indeed show reduced arousal, for instance

upon starvation (LeDue et al., 2016; Li et al., 2016; Zhang

et al., 2013). Additionally, OA neurons (OANs) gate appetitive

memory formation of odors (Burke et al., 2012; Perry and Barron,

2013) and alsomodulate taste neurons and feeding behavior (Le-

Due et al., 2016; Wang et al., 2016; Youn et al., 2018). OANs are
19 Published by Elsevier Inc.
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organized in distinct clusters and project axons to diverse higher

brain regions in a cell type-specific manner (Busch et al., 2009;

Busch and Tanimoto, 2010). The precise roles and important

types of OA and NE neurons in state-dependent action selection

remain to be elucidated.

Similar to NE and OA, dopamine (DA) is being studied in many

aspects of behavioral adaptation and flexibility. Different classes

of DA neurons (DANs) innervating primarily the MB signal nega-

tive or positive context (Aso and Rubin, 2016; Burke et al., 2012;

Cohn et al., 2015; Lewis et al., 2015; Liu et al., 2012; Plaçais et al.,

2012; Riemensperger et al., 2005), novelty (Hattori et al., 2017),

forgetting (Berry et al., 2012, 2015), or even wrong predictions

(Felsenberg et al., 2017, 2018).

Here, we took advantage of the small number and discrete or-

ganization of neuromodulatory neurons in the fly brain to analyze

the mechanistic relationship between motivation-dependent

persistence in one behavior and the decision to disengage and

change to another behavior. Using a single fly spherical treadmill

assay, we find that hungry flies increase their effort to track a

food odor with every unrewarded trial. We show that MB output

through two identifiedMBONs (MBON-g1pedc>a/b andMBON-

a2sc) is required for persistent odor tracking. MBON-a2sc pro-

vides a MB connection to the lateral horn (LH), where it can

modify innate food odor attraction as recently shown (Dolan

et al., 2018). Furthermore, we pinpoint a specific type of OAN,

VPM4 (ventral paired medial), which connects feeding centers

directly to MBON-g1pedc>a/b and disrupts food odor tracking.

Finally, our experimental data suggest that persistent tracking

depends on DANs, including PPL1-g1pedc, and signaling

through dopamine receptor Dop1R2 in ab-type KCs. Based on

our results, we propose that MB output and a direct external

input, depending on internal state and motivation, gradually pro-

mote or interrupt ongoing behavior.

RESULTS

Flies Persistently Track Attractive Food Odors in the
Absence of Reward
To study the mechanisms underpinning continuing versus stop-

ping of a behavior, we devised a spherical treadmill assay with

a tethered fly exposed to a low-speed frontal air stream or odor

stimulus allowing us to repeatedly stimulate the animal with

odorant at a precise concentration and duration (Figure 1A).

Upon an initial period of 3min of habituation, we recorded running

speed, turns, and stops during a 20 s pre-stimulus, a 12 s stim-

ulus, and a 20 s post-stimulus period (Figure 1A). To test persis-

tence in odor tracking, the protocol was repeated 10 times with

variable inter-stimulus intervals. We used 3 ppm of vinegar

odor as a highly attractive cue to analyze the odor tracking

behavior of a hungry fly (24 h starvation). Flies ran on average

at a speed of 7.3 mm/s during the pre-stimulus periods (Fig-

ure 1B). During odor stimulation, flies sped up significantly and

reached speeds of 12.4 mm/s on average (Figure 1B). Upon

cessation of the odor stimulus, flies showed a strong offset

behavior with stopping before regaining an average speed of

6.8mm/s (Figure 1B). In addition to changing speed, the flies sup-

pressed turning and were headed straighter suggesting that they

were indeed tracking the odorant (Figure 1C). The loss of the ol-
factory cue at the end of the stimulation period led to a significant

increase in turning behavior (Figures 1C and S1A), suggesting

that the flies were searching for the stimulus as previously

observed for fly larvae, adult flies (Álvarez-Salvado et al., 2018;

Gomez-Marin et al., 2011), and other animals including humans

(Porter et al., 2007). Interestingly, this behavior evolved over 10

trials (Figures 1D and 1E). Although flies showed an initial accel-

eration at stimulus onset already during the first 3 trials, they did

not persistently track the odors at high speed for more than a

fraction of the stimulus time (Figure 1D). With increasing number

of trials, however, the flies ran over longer distances and more

frequently for the entire stimulus time of 12 s (Figure S1B). In addi-

tion, they ran faster with each trial and suppressed turning more

efficiently (Figures 1D and S1C). Some of the increase in speed

continued also between odor stimulations from trial 1 to 10 (Fig-

ures 1D and S1C). These data show that flies reliably track food

odors by suppressing turning behavior and increasing speed,

and that these behaviors intensify over trial number.

Any change in the fly’s environment, including a change in

airflow or wind, could induce forward running. To test this, we

analyzed the behavior of mutants of the essential olfactory co-re-

ceptor Orco, which is required to detect vinegar (Semmelhack

and Wang, 2009). Orco mutant flies showed a significantly

reduced reaction to vinegar stimulation as compared to hetero-

zygous controls upon stimulus onset (Figure S1D). These results

show that the animal’s reaction depends on the detection of a

sensory stimulus such as an appetitive odor.

We next asked whether the valence of the stimulus influenced

odor tracking behavior in our assay. Frontal stimulationwith CO2,

which elicits aversion in laboratory assays with walking flies

(Br€acker et al., 2013; Suh et al., 2004), led to the opposite

behavior compared to the behavior elicited by vinegar in hungry

animals (Figure S1E). Flies slowed down and significantly

increased their turning to left and right consistent with odor aver-

sion (Figure S1E). A similar avoidance behavior was observed in

a tethered flying fly assay with frontal odor stimulation (Badel

et al., 2016). Of note, however, CO2 is not always aversive; freely

flying flies are attracted to this gas in a state-dependent manner

(van Breugel et al., 2018).

Taken together, these data show that targeted food odor

tracking behavior increases over time even in the absence of a

food reward. Loss of the odor stimulus increases turning, indi-

cating search behavior.

Tracking Intensity Depends on Hunger State
Numerous studies have addressed how reward increases an an-

imal’s attraction to a sensory cue. Less is known that explains

why an animal maintains and even improves a not yet successful

behavior. In healthy animals, the interest in food is regulated by

their need to acquire calories and nutrients. This was also

evident in our assay: fed flies did not show any persistence in

food odor tracking (Figures 1F–1J). By contrast, 24 and 48 h

starved flies showed persistent tracking behavior (Figures 1F–

1J). To better investigate the influence of hunger on the fly’s

persistence, we changed the assay from an open to a closed

loop configuration, and allowed the fly to control the offset of

the odorant by stopping to run (Figures 1K–1M). Fed flies tracked

the odor for 13.3 s, while 24 h starved flies followed the odor for
Neuron 104, 544–558, November 6, 2019 545



Figure 1. Persistent Odor Tracking Is Moti-

vated by Hunger

(A) Top: Spherical-treadmill assay for olfactory

stimuli.

(B) Top: Average running speed with SEM (mm/s)

of 18 wild-type Canton S flies under repeated

vinegar exposure for 10 trials. Shaded areas

represent the odor exposure duration. Bottom:

Average running speeds of flies during vinegar

exposure were significantly higher compared to

the speeds observed during pre- and post-stim-

ulation periods.

(C) Top: Average absolute turning speed with SEM

(deg/s) of 18 flies under repeated vinegar expo-

sure for 10 trials. Bottom: The absolute turning

speed under vinegar was significantly lower than

the turning speed recorded in pre- and post-

stimulation periods.

(D) Average running speed with SEM of 18 wild-

type flies over time for each of the individual

10 trials.

(E) Comparison of average running over trials.

(F) Average running speed with SEM of fed (0 h)

and hungry (24 and 48 h) flies during trial 1 and trial

10 of repeated vinegar exposure.

(G and H) Average running speed with SEM during

odor stimulation during trial 1 to 10 for fed, 24 h

and 48 h starved flies. The boxplot (G) displays the

Tukey’s post hoc analysis for the main group

effect.

(I and J) Average running bout times with SEM

during open-loop odor exposure for fed and

food-deprived flies over 10 trials. The boxplot (J)

displays the Tukey’s post hoc analysis for themain

group effect.

(K) Left: Schematics for the closed-loop assay.

Right: Average running bout times with SEM dur-

ing closed-loop odor exposure for differentially

food-deprived flies over 10 trials.

(L) Total running times of fed and starved flies

during odor stimulation.

(M) Average summed running bout times during

10 trials for all groups in closed-loop experiments

under vinegar exposure.

For all analyses, statistical notations are as

follows: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p <

0.001; ****, p < 0.0001. In all panels, error bars

denote SEM.
122.4 s, on average (Figure 1L). Interestingly, 48 h starved flies

showed a higher persistence than 24 h starved animals and

tracked the odor for up to 248.2 s over ten trials, on average (Fig-

ure 1L). It is unlikely that the increase in running times is due sim-

ply to improved motor skills over trials, where the best skills, and

hence fastest running would be expected to always occur at the

last trials; however, among all recorded trials the longest trials of

each fly were distributed across all trial numbers (1–10) including

trials as early as number 2 (Figure S1F). Moreover, the same

experiment with only air during stimulus phase did not induce

long and fast tracking (Figure S1G–S1J). Finally, not only tracking

time but also tracking speed depended on starvation time, with

48 h starved animals running on average faster than 24 h starved

flies during odor stimulation (Figure 1M). These results demon-
546 Neuron 104, 544–558, November 6, 2019
strate that starvation specifically and gradually changes the an-

imal’s behavioral expression and persistence in tracking a

food odor.

Specific MB Output Neurons Control Food Odor
Tracking
Recent work implicated the MB in metabolic state-dependent

modulation of innate olfactory behaviors (Br€acker et al., 2013;

Grunwald Kadow, 2019; Lewis et al., 2015; Tsao et al., 2018).

We, therefore, next addressedwhether theMBnetworkcontrib-

utes to hunger-induced persistent food odor tracking. In a screen

of Split-Gal4 lines that target MBONs for a reduction in attraction

to vinegar with the T-maze assay, we identified MBON line

MB112C,which expresses inMVP2/MBON-g1pedc>a/b neurons
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Figure 2. Two Synaptically Connected MBONs Are Required for Odor Tracking

(A) Running speeds during stimulus phase in trial 1 and trial 10 upon blocking synaptic output of MVP2/MBON-g1pedc>ab (MB112C>UAS-Shibirets1) at non-

permissive temperature compared to control with empty-Gal4 (pBDPU-Gal4>UAS-Shibirets1).

(B) Average running speeds during stimulus phase over trials.

(C) Running speeds during acute MBON-g1pedc>ab activation with CsChrimson (MB112-Gal4>UAS-CsChrimson) in starved flies compared to controls

(pBDPU-Gal4>UAS-CsChrimson).

(D) Running speeds during stimulus phase over trials. (E) Running speeds during stimulus phase in trial 1 and trial 10 upon blocking synaptic output of

MBON-a2sc (MB80C) compared to controls (pBDPU-Gal4>UAS-Shibirets1).

(F) Running speeds during stimulus phase over trials.

(G) Running speeds in starved flies when the MB80C neuron was activated via optogenetics (MB80C>UAS-CsChrimson) (controls: pBDPU-Gal4>UAS-

CsChrimson).

(H) Running speeds during stimulus phase over trials.

For all analyses, statistical notations are as follows: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. In all panels, error bars denote SEM.
(Aso et al., 2014b) (Figure S2A). This result was in line with recent

work using adifferent foodfindingassay (Perisse et al., 2016; Tsao

et al., 2018).On the ball, inactivation ofMBON-g1pedc>a/b’s syn-
aptic output using overexpression of the effector Shibirets1 (shits1)

significantly reduced olfactory tracking speed in the starved ani-

mal (Figures 2A and 2B). In order to test whether activation of
Neuron 104, 544–558, November 6, 2019 547



Figure 3. MBONs Show Trial- and Feeding

State-Dependent Odor Responses

(A) Left: Scheme of MBON-g1pedc>ab (MB112C)

innervating the MB lobes. Right: MB112C>

GCaMP6f expression in an in vivo two-photon

preparation. ROIs are marked by dashed lines

(scale bar 10 mm).

(B) Average traces of odor responses (purple line)

of MB112C peduncle dendrites from trial 1 to 10.

(C) Average traces of odor responses of MB112C

g1 dendrites from trial 1 to 10.

(D) Quantification of the area under the fluores-

cence response during the stimulus period in the

peduncle region from trial 1 to 10.

(E) Quantification of the area under the fluores-

cence response during the stimulus period in the

g1 region from trial 1 to 10.

(F) Left: Scheme of MBON-a2sc (MB80C) inner-

vating the MB lobes. Right: MB80C>GCaMP6f

expression in an in vivo two-photon preparation.

The ROI is marked by dashed lines (scale bar

10 mm).

(G) Average traces of odor responses of MB80C

axons from trial 1 to 10.

(H, I) Quantification of the area under the fluores-

cence responses during the stimulus period and

after the stimulus period.

(J) Quantification of the offset peak decay time

constant over trials.

For all analyses, statistical notations are as

follows: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p <

0.001; ****, p < 0.0001. In all panels, error bars

denote SEM.
MBON-g1pedc>a/b was sufficient to induce odor tracking, we

expressed the red-shifted channel rhodopsin CsChrimson under

the control of MB112C (MB112C>CsChrimson), and stimulated

the flies with 12 s odor stimulus, but overlapped it, 2 s after odor

onset,witha10s red-light stimulus (Figures2Cand2D).Activation

ofMBON-g1pedc>a/b induced tracking in thepresenceofanodor

stimulus in fed animals, but did not further increase tracking in the

starved fly, indicating that this neuron is already active in the

hungry animal (Figures 2C, 2D, and S2B–S2D). Light alone also

induced some forward running, albeit to a lesser extent than

odor alone (Figures S2E–S2G).

MBON-g1pedc>a/b projects from the MB g1/peduncular

region again to KCs and other MBONs providing output

from a and b lobes (Takemura et al., 2017). Among the primary

neurons innervated by MBON-g1pedc>a/b is MBON-a2sc

(labeled by line MB080C) (Takemura et al., 2017), which is

also required for food odor attraction (Figure S2A). Indeed,

inactivation of MBON-a2sc output (MB080C>shits1) resulted
548 Neuron 104, 544–558, November 6, 2019
in a strong reduction in average food

odor tracking in the ball assay (Figures

2E and 2F). Moreover, the trial-by-

trial increase was reduced (Figures

2EF). While the phenotype is stronger

for MBON-a2sc inactivation than for

MBON-g1pedc>a/b, these data are

consistent with the hypothesis that
MBON-g1pedc>a/b is among the neurons providing input

to MBON-a2sc during odor tracking. Furthermore, optoge-

netic activation of MBON-a2sc induced faster and more

persistent tracking at odor trial 1, but not at trial 10, compared

to controls (Figures 2G and 2H; 2-way RM ANOVA

ptrial x group interaction = 0.0390), supporting a role for MBON-

a2sc in regulating tracking intensity.

Together, the data implicate twoMBONs in odor tracking over

multiple trials.

MBON-g1pedc>a/b Shows Trial-Dependent Odor
Responses
Given the requirement of MBON-g1pedc>a/b and -a2sc, we

predicted that their response to repeated odor experience

should gradually change over trials. Thus, we imaged odor re-

sponses using GCaMP6f calcium imaging in vivo and stimu-

lated the fly as done during the behavioral experiment (Figures

3A and 3E). We quantified two regions of interest for



Figure 4. Taste and Food Suppress Odor

Tracking

(A) Average running speeds of 24 h and 24 h,

30 min re-fed animals at trial 1 and trial 10.

(B) Running speeds over trials in 24 h starved and

30 min re-fed flies compared to 24 h starved ani-

mals. The boxplot displays the main group effect.

(C) Left: Schematics of the concurrent odor and

optogenetic-activation protocol. Right: Gr5a>

UAS-CsChrimson and Gr43a>UAS-CsChrimson

flies compared to control (pBDPU-Gal4>UAS-

CsChrimson).

(D) Running speed over trials during simultaneous

odor and light activation. The boxplot displays the

main group effect.

(E) Average running activity displayed as boxplots

for flies expressing CsChrimson in Gr5a or Gr43a

neurons (Gr5a-Gal4;UAS-CsChrimson andGr43a-

Gal4;UAS-CsChrimson).

For all analyses, statistical notations are as fol-

lows: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p <

0.001; ****, p < 0.0001. In all panels, error bars

denote SEM.
MBON-g1pedc>a/b, the peduncle—the region immediately

downstream of the odor input site (calyx)—and the g1 lobe

(Figures 3A–3E). Odor responses in the peduncle region grad-

ually decreased from trial 1 to 10 (Figures 3B and 3D). Re-

sponses in the g1 dendrites also showed some significant

changes over trials, which followed a different pattern. The

calcium signal first increased until trial 3 or 4 before going

back to or below its baseline level (Figures 3C and 3E). Inter-

estingly, MBON-g1pedc>a/b receives differential KC input in

the peduncle versus g1-lobe region. While g-KCs provide

g1-input, the peduncle region receives input exclusively from

a/b-KCs (Takemura et al., 2017). These data indicate that

MBON-g1pedc>a/b either is intrinsically sensitive to the num-

ber of prior odor experiences or receives trial-dependent ol-

factory input, for instance by a/b-KCs and/or through dopami-

nergic modulation.

Next, we recorded odor responses of MBON-a2sc using the

same imaging setup and observed an interesting response to

the 12 s odor stimulus in each trial; an initial transient calcium

peak (i.e., on-response) was followed by a strong decrease

and, upon odor stimulus end, a strong re-bound response

(i.e., off-response; Figure 3G). This type of response is

consistent with a relief of inhibitory input at the end of the

stimulus. However, we did not observe a significant effect
Ne
of trial number on MBON-a2sc. Still,

while the responses remained relatively

stable over trials (Figures 3H–3J), we

observed a significantly longer off-

response decay time between fed and

hungry animals (Figure 3J).

Taken together, while these data

point to a complex relationship between

neuronal activity and behavior, possibly

due to the inability of the fly to express

behavior during imaging, they also pro-
vide evidence that these MBONs are indeed modulated by the

number of odor experiences and also by the animal’s meta-

bolic state.

Sugar Neuron Activation Suppresses Odor Tracking
Our behavioral data implicated hunger or feeding state as a main

motivator for persistent odor tracking. To test this assumption

more directly, we re-fed 24 h-starved flies for only 30 min with

standard fly food just prior to the assay. This re-feeding signifi-

cantly suppressed food odor tracking, in particular during the

first few trials of the assay (Figures 4A and 4B). Therefore,

feeding-induced cues such as post-ingestion signals appear to

suppress food odor tracking in our assay as also shown for other

paradigms (Corrales-Carvajal et al., 2016; Mann et al., 2013;

Thoma et al., 2016). To test the ability of the taste of food or in-

ternal sugar to suppress food odor tracking with high temporal

precision and during the continued presence of odor, we ex-

pressed CsChrimson and optogenetically activated two sets of

sugar taste neurons (Figures 4C and 4D). First, activation of

exclusively peripheral (labellar and tarsal) gustatory receptor

(Gr) 5a-expressing sweet taste neurons was employed to mimic

the taste of a potential calorie source (Thoma et al., 2016). Next,

Gr43a neurons were activated tomimic ingested sugar, because

Gr43a is not only expressed in peripheral taste neurons but has
uron 104, 544–558, November 6, 2019 549



also been shown to function as internal sugar sensor in the brain

(Miyamoto et al., 2012) and potentially in the gut (Park and Kwon,

2011). Gr5a or Gr43a neuron activation led to an immediate stop

of odor tracking in spite of continued odor stimulation, suggest-

ing that animals that reach a food source prioritize short-range or

internal feeding-related over long-range signals (Figures 4C and

4D). However, although light-stimulation of Gr5a neurons

continued, flies reverted their behavior and quickly resumed

odor tracking and reached high speed again at the end of each

of the trials (Figures 4C–4E). Similarly, Inagaki et al. have previ-

ously reported that prolonged optogenetic activation of sugar

taste neurons (i.e., Gr5a) only transiently induces proboscis

extension, which ceases much before the end of the light stimu-

lation (Inagaki et al., 2014). By contrast, Gr43a neuron activation

lastingly reduced the fly’s tracking behavior consistent with

mimicking of high internal sugar (Figures 4C–4E). From these

results, we conclude that a meal, presumably through post-

ingestive signals, but not just the taste of food, lastingly sup-

presses food odor tracking.

Octopamine Inhibits Tracking in Hungry Flies
Based on our results, we sought to identify the neural circuits that

coordinate and prioritize sensory information to enable feeding

stimuli to override odor-stimulated behavior.

OANs were previously implicated in appetitive olfactory

learning (Burke et al., 2012; Schröter et al., 2007; Schwaerzel

et al., 2003) and modulation of feeding-related behaviors (LeDue

et al., 2016; Youn et al., 2018; Zhang et al., 2013). Therefore, we

tested whether acute activation of all OANs resulted in tracking

suppression by using optogenetic activation via the Tdc2-Gal4

driver paired with the odor stimulus (Figures 5A and 5B).

Activation (Tdc2>CsChrimson) fully suppressed odor tracking

and led to immediate and persistent slowing down or stopping

(Figures 5A and 5B). To gain more evidence that Tdc2+ neuron

activation suppressed food finding behavior and represented

something attractive to the animal, we used a custom-built

4-arm olfactory choice assay (Figure S3A). Optogenetic activa-

tion of Tdc2+ neurons alone or in the presence of vinegar odor

in the same quadrant resulted in a significantly higher dwell

time of the flies in the illuminated quadrants (Figures S3A–

S3D). Based on these data, OANs appear to be good candidates

for enabling the animal to prioritize the short-range exploration

and exploitation of a food source over odor-induced long-range

food search.

A Specific Subtype of OA Neurons Antagonizes Food
Odor Tracking
The ventral cluster of Tdc2+ neurons represents one of the

largest and contains several types of OANs such as the VUM

(ventral unpaired medial) and VPM (ventral paired medial) type

neurons, which again contain different anatomically distinct

types of neurons (Busch and Tanimoto, 2010).

To pinpoint the exact neuron(s) capable of suppressing odor

tracking, we screened several candidate OAN lines by optoge-

netic activation. Activation of OANs labeled by two Split-Gal4

lines, MB113C and MB22B, labeling two neuron types of the

VPM cluster, VPM3 and VPM4 (Figures 5G–5J), strongly sup-

pressed food odor tracking (Figures 5C and 5D) and led to a
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sustained decrease in speed during light plus odor stimulation

(Figure 5D). Genetic controls and flies carrying the same trans-

genes, but which were stimulated only with odor and not light,

behaved like control flies (Figures S3E and S3F). Inhibition of

the synaptic output of these VPM neurons in fed or starved

flies did not result in a change in food odor tracking (Figures

S3G–S3J), showing that these neurons are not directly involved

in the execution of tracking behavior or olfactory processing. In

addition, activation of VPM3/VPM4 in the 4-arm olfactory choice

assay significantly increased the time flies spent on the light and

odor quadrant (Figures 5E and 5F). This result supports our inter-

pretation that OA-VPM3/VPM4 neurons suppress long-distance

food search behavior.

Line MB113C and MB22B overlap only in one neuron type,

VPM4, (Aso et al., 2014a), indicating that this neuron was central

to the observed behavior. Antibody staining against octopamine

confirmed the categorization as OAN (Figures 5K and 5L). Inter-

estingly, in line with our findings, a recent study showed that

VPM4 neurons promote feeding and modulate peripheral sugar

taste neurons in hungry flies (Youn et al., 2018). Based on this

previous work and our results, it appears that OA-VPM4 neurons

suppress odor tracking behavior and promote feeding related

behaviors.

VPM4 Directly Inhibits MBON-g1pedc>a/b
VPM3/VPM4 neurons extend dendrites within the sub- and peri-

esophageal zones and send projections to the MB and other

higher brain regions (Figures 5I and 5J). Interestingly, at the level

of the MB lobes, the innervation pattern of MBON-g1pedc>a/b

overlaps partially with VPM4 in the g1 MB lobe, indicating that

VPM4 andMBON-g1pedc>a/bmight be directly connected (Fig-

ure S4A). Moreover, recent analysis of theMB connectome in the

Drosophila larva revealed an octopaminergic neuron, named

OAN-g1, forming direct synapses onto MBON-g1/g2 neurons,

which are proposed to mediate feed-forward inhibition similar

to MBON-g1pedc>a/b (Eichler et al., 2017).

We investigated the possibility of similar connectivity using

a recently published EM volume of an entire female adult

Drosophila brain (Zheng et al., 2018). Reconstruction of

MBON-g1pedc>a/b and subsequent sampling of its synaptic in-

puts to the g1 compartment quickly led to the identification of

two putatively aminergic neurons (based on the presence of

dense core vesicles). Further reconstructions identified these

neurons morphologically to be VPM3 and VPM4 (Figure 6A).

Both neurons form numerous synaptic contacts onto MBON-

g1pedc>a/b dendrites exclusively in the g1 compartment with

VPM4 making about 50% more synapses than VPM3 (Figures

6B, 6C, and S4B–S4D). In addition, MBON-g1pedc>a/b also

made a smaller number of reciprocal synaptic contacts back

to VPM3 but not to VPM4 (Figure S4B). We found no evidence

that VPMs contact MBON-g1pedc>a/b in other regions of the

MB lobes, although we cannot completely rule this out.

Next, we expressed the ATP-sensitive mammalian channel

P2X2 (Yao et al., 2012) in VPM4 to test the effect of activating

this OAN on MBON-g1pedc>a/b (Figure 6D). We monitored

GCaMP6f fluorescence in MBON-g1pedc>a/b upon adding

ATP to an in vivo brain preparation (Figures 6D and 6E). Addition

of ATP led to a significant decrease in baseline GCaMP



Figure 5. A Subset of Octopaminergic Neurons Inhibit Odor Tracking

(A) Acute optogenetic activation of octopaminergic neurons. CsChrimson was expressed in octopaminergic neurons by Tdc2>UAS-CsChrimson (Controls: UAS

Ctrl: +>UAS-CsChrimson, Gal4 Ctrl: Tdc2-Gal4>+). Running speeds during trial 1 and trial 10.

(B) Evolution of average running speeds for Tdc2>UAS-CsChrimson flies during odor exposure over trials. The boxplot displays the main group effect.

(C) Acute optogenetic activation of VPM neurons. MB22B harbors VPM3 and VPM4 neurons, whereas MB113C labels only VPM4 (Control: pBDPU-Gal4>UAS-

CsChrimson). Running speeds during trial 1 and trial 10.

(D) Average running speeds for MB22B>UAS-CsChrimson and MB113C>UAS-CsChrimson flies during odor exposure. The boxplot displays the main group

effect.

(E) Left: Scheme of optogenetic and olfactory behavioral test arena. Right: Average preference index during optogenetic activation of octopaminergic neurons

under vinegar exposure.

(F) Activation of VPMs compared to genetic controls.

(G–J) Expression patterns and polarity of MB22B (H, H0, and J) andMB113C (G, G0, and J) split-Gal4 lines. SEZ (subesophageal zone); PEZ (periesophageal zone)

(K–L00) VPM4 neurons (MB113C>mCD8GFP) express octopamine.

For all analyses, statistical notations are as follows: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. In all panels, error bars denote SEM.
fluorescence in MBON-g1pedc>a/b neurons in the presence of

P2X2 in VPM4 but not in controls (Figure 6E). Similarly, activation

of VPM4 through ATP also reduced the odor-evoked GCaMP6f
signal in MBON-g1pedc>a/b neurons (Figure 6F). These results

provide strong evidence for an inhibitory synaptic connection

between VPM4 and MBON-g1pedc>a/b.
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Figure 6. VPM4 Modulates MVP2-Dependent Tracking

(A–C) EM reconstruction reveals synaptic connections between MBON-g1pedc>ab and VPM3 and VPM4.

(A) Skeletons of EM reconstruction of MBON-g1pedc>ab (blue), VPM3 (red), and VPM4 (purple) on the neuropil of a whole fly brain.

(B) Red (VPM3) and purple (VPM4) indicate the synapses between VPMs and MBON-g1pedc>ab, respectively.

(C) Higher magnification of B.

(D) Scheme showing VPM4 and MBON-g1pedc>ab neurons at the level of the mushroom body and the genetic combination of transgenes expressed in the fly

used for the experiment.

(E) Left: Average traces of GCaMP fluorescence in MBON-g1pedc>ab dendrites upon ATP application on brain in an in vivo preparation. Right: Boxplots dis-

playing peak amplitude of % rF/F GCaMP fluorescence in MBON-g1pedc>ab/MVP2 upon ATP application.

(F) Left: Representative pseudocolored images displaying GCaMP fluorescence in MBON-g1pedc>ab during odor stimulation (12 s vinegar) upon ATP appli-

cation in an in vivo preparation. Right: Boxplots displaying normalized (to genetic control) responses (area under the curve) to 12 s vinegar and ATP stimulation in

MBON-g1pedc>ab/MVP2.

(G) Epistasis experiment for VPM4 and MBON-g1pedc>ab suggesting that VPM4 suppresses MBON-g1pedc>ab induced odor tracking. Running speed at

trial 1 and 10.

(H) Running speeds over trials during odor stimulation period.

For all analyses, statistical notations are as follows: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. In all panels, error bars denote SEM.
Consistent with a direct synaptic connection, we found that

activation of VPM4 and inactivation of MBON-g1pedc>a/b

showed similar phenotypes (i.e., reduction of odor tracking).

Therefore, we argued that activation of VPM4 could potentially

override the activation of MBON-g1pedc>a/b and inhibit odor

tracking. To test this, we combined MB112C- and MB113C-

Gal4 with UAS-CsChrimson and applied the same protocol as

above. Activation of only MBON-g1pedc>a/b led to significant

odor tracking in response to vinegar in the fed fly as expected

(Figures 6G, 6H, S4E, and S4F). Concurrent activation of both
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neurons (VPM4 and MBON-g1pedc>a/b) showed that VPM4

activation with the Split-Gal4 line MB113C was sufficient to sup-

press the effect of activation of MBON-g1pedc>a/b (Figures 6G,

6H, S4E, and S4F). This could occur through the direct synaptic

interaction of these two neurons, although other mechanisms

cannot be excluded.

We conclude that OA-VPM4 arbitrates between odor-medi-

ated food search and the rewarding experience of feeding by

promoting taste-induced consumption behavior (Youn et al.,

2018) and simultaneously suppressing food odor tracking.



Figure 7. Persistence in Odor Tracking Depends on Dopamine Signaling

(A) Scheme of dopaminergic neurons innervating MB lobes.

(B) Running speed of hungry flies at trial 1 and 10 (24 h starved) with inactivated output of either PAM DANs (58E02-Gal4>UAS-Shits1) or TH+/PPL DANs

(TH-Gal4>UAS-Shits1).

(C) Average running speed over 10 trials for hungry flies (24 h starved) with inactivated output of PAM DANs (58E02-Gal4>UAS-Shits1) or TH+ DANs (TH-

Gal4>UAS-Shits1) compared to control. The boxplot displays the main group effect.

(D) Running speed during trial 1 and 10 of hungry flies (24 h starved) with inactivated output of different subsets of DANs within the TH-Gal4 positive DAN cluster.

(E) Average running speed during odor stimulation over 10 trials of hungry flies (24 h starved) with inactivated output of different DAN/TH+ subsets. The boxplot

displays the main group effect.

(F) Table of TH-Gal4 transgenes in different clusters of DANs.

(legend continued on next page)
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Dopaminergic Neurons Are Necessary for Persistent
Odor Tracking
In lieu of a reward or activation of sugar or VPM neurons, flies

continue to track food odor. Given the important role of specific

MBONs in this behavior, we tested whether dopamine could be

involved. Two major subsets of DANs previously implicated in

odor-guided behavior exist in the fly brain: the protocerebral

anterior medial (PAM) and the protocerebral posterior lateral

(PPL1) cluster (Aso et al., 2014a). In addition, a number of smaller

DAN subsets exist in the fly (Mao and Davis, 2009) (Figure 7A).

While the PAM cluster mediates positive experiences during

classical conditioning, PPL1 neurons transmit painful stimuli

such as electric shock or heat to the MB (Burke et al., 2012; Galili

et al., 2011; Liu et al., 2012). The transgenic line TH-Gal4 labels

all cells in the PPL1 and PPL2ab clusters, as well as only one

DAN from the PAM group. Thermogenetic activation of these

‘TH+’ neurons can substitute an aversive stimulus and induce

negative memories (Aso et al., 2012).

Inactivation of TH+ neuron output by overexpression of shibire

under the control of TH-Gal4 (TH>shits1) changed the fly’s

behavior significantly (Figure 7B). While TH-shits1 flies acceler-

ated at the beginning of each trial in response to odorant, their

behavior did not evolve from trial 1 to trial 10 (Figures 7B and

7C). As a permanent lack of dopamine affects motor activity

and startle behavior (Riemensperger et al., 2011), we tested

whether TH-shits1 flies were simply not able to run as fast as

controls. To this end, we measured the flies’ spontaneous

running speed in the absence of odor at the elevated tempera-

ture of 35�C, as this stimulates fast running in control flies

(Figures S5A and S5B). Here, TH-shits1 flies behaved indistin-

guishably from control flies and ran at speeds of 20 and even

30 mm/s (Figure S5B). These data suggest that motor deficits

are not responsible for the reduction in odor tracking persistence

upon inactivation of TH+ DANs.

In contrast to TH+ neuron inactivation, inactivation of all PAM

neurons with the line 58E02-Gal4 driving UAS-shits1 had no ef-

fect on the fly’s tracking behavior and persistence as compared

to control flies (Figures 7B and 7C). These data posit that a

subset of DANs, in particular those involved in aversive memory

formation, are required to drive increased odor tracking with

every non-rewarded trial.

TH-Gal4 labels a number of DANs in the fly brain, including

some outside the MB (Mao and Davis, 2009). We sought to

further narrow down the type of DAN that mediates persistence

in odor tracking. We screened a number of transgenic lines ex-
(G) Scheme displaying PPL1-g1pedc (MP1) DAN innervating the MB.

(H) Running speed during trial 1 and 10 of hungry flies (24 h starved) with inactiv

(I) Average running speed during odor stimulation over 10 trials of hungry flies (24 h

The boxplot displays the main group effect.

(J) Running speed during trial 1 and 10 of hungry flies (24 h starved) lacking the

(K) Average running speed during odor stimulation over 10 trials of hungry flies (2

displays the main group effect.

(L) Running speed during trials 1 and 10 for hungry flies (24 h starved) with Dop1

controls (pBDPU>Dop1R2i).

(M) Average running speeds over 10 trials for hungry flies (24 h starved) with Dop

controls (pBDPU>Dop1R2i). The boxplot displays the main group effect.

(N) Model of neurons implicated in persistent odor tracking (see main text for de

For all analyses, statistical notations are as follows: ns, p > 0.05; *, p < 0.05; **, p
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pressing either in single types or smaller subsets of DANs (Aso

and Rubin, 2016; Liu et al., 2012) (Figures 7E–7H and S7C–

S7E). Inhibition of most single PPL1 DANs did not result in a

significant difference in tracking behavior compared to controls

(Figures S5D and S5E). However, inhibition of some TH+ neuron

subsets using Gal4-transgenic lines generated by enhancer-

bashing of the original TH-Gal4 enhancer significantly decreased

persistent odor tracking (Figures 7D–7F). Furthermore, driving

shits1 expression in PPL1-g1pedc (or MP1, MB320C-Gal4), pre-

viously shown to modulate MBON-g1pedc>a/b in a hunger

state-dependent manner (Figures 7G–7I) (Pavlowsky et al.,

2018; Perisse et al., 2016; Tsao et al., 2018), also significantly

dampened the flies’ average tracking behavior compared to

control (Figures 7H and 7I). Altogether, although we cannot

exclude a contribution of DANs outside of theMB network, these

results suggest that subsets of PPL1 and PPL2 neurons are

involved in maintaining and increasing olfactory tracking but

also that no single subset alone mediates the full effect.

Dop1R2 in Kenyon Cells Regulates Persistent Tracking
Having implicated dopamine in persistent odor tracking, we

next sought to identify the mechanism. The best studied dopa-

mine receptors in the fly are D1-like receptors Dop1R1 (or

Dumb, dDA1, DopR1) and Dop1R2 (or Damb, DopR2). Prior

work suggested that Dop1R1 mediates memory acquisition,

and Dop1R2 facilitates forgetting; while Dop1R1 induces stron-

ger cAMP-dependent signaling, Dop1R2 signaling initiates

higher calcium levels in the post-synaptic neuron through a

different G-protein than induced by Dop1R1 (Berry et al.,

2012; Himmelreich et al., 2017). Interestingly, Dop1R2 has

also been implicated in the formation of long-lasting aversive

memory induced through a protocol of repeated pairings of

odor with electric shocks (Plaçais et al., 2012, 2017). We

analyzedmutant flies of both receptors on the fly ball to test their

persistence in odor tracking. Dop1R1 mutants performed non-

significantly differently from heterozygous controls and reached

the same average speed during stimulus periods (Figures S5F

and S5G). By contrast, Dop1R2 mutant animals displayed a

strongly reduced speed and tracked the odorant less persis-

tently (Figures 7J and 7K). Their average speed during stimulus

periods was significantly reduced, although their speed during

the first stimulus period (dark blue curve, Figure 7J) was not

different from heterozygous controls (Figures 7J and 7K).

Instead, the significant reduction in stimulus speed resulted

from a gradual decrease of running speed and length in
ated output of PPL1-g1pedc (MP1) compared to controls.

starved) with inactivated output of PPL1-g1pedc (MP1) compared to controls.

Dop1R2 receptor gene and heterozygous controls.

4 h starved) without Dop1R2 compared to heterozygous controls. The boxplot

R2 receptor knockdown in ab Kenyon cells (MB008B>Dop1R2i) compared to

1R2 receptor knockdown in ab Kenyon cells (MB008B>Dop1R2i) compared to

tails).

< 0.01; ***, p < 0.001; ****, p < 0.0001. In all panels, error bars denote SEM.



response to the stimulus (Figure 7K). As both types of MBONs

involved in persistent odor tracking receive input by ab-type

KCs, we next asked whether Dop1R2 signaling was required

in these neurons by knocking down Dop1R2 expression by

RNAi specifically in these neurons (MB008B>Dop1R2i). This

was indeed the case. Flies without Dop1R2 in ab-type KCs

showed a strong decrease in persistent odor tracking over trials

compared to controls (Figures 7L and 7M). These data implicate

Dop1R2 as an important mediator of tracking persistence in the

absence of reward, a function perhaps in line with a role of this

receptor in maintaining memory of past, possibly negative,

experience (see for instance [Dolan et al., 2018; Plaçais et al.,

2013; Séjourné et al., 2011]).

DISCUSSION

What drives gradually increasing persistence in behavior? For

the fly, we propose a model by which a circuit module of KCs,

MBONs, and DANs drive gradually increasing odor tracking,

which can be efficiently suppressed by extrinsic MBON-inner-

vating feeding-related OANs (Figure 7N). Behavioral persistence

has been previously analyzed in flies in a different context. For

instance, courtship of fly males and copulation with a female

are maintained by dopaminergic neurons in the ventral nerve

cord, where they counteract GABAergic neurons (Crickmore

and Vosshall, 2013). In that scenario, DANs in the ventral nerve

cord maintain an ongoing behavior and prevent that the male

disengages prematurely before successful insemination.

Our experimental data also implicate DANs, primarily from

within the PPL1 (e.g., PPL1-g1pedc) and PPL2ab clusters, and

Dop1R2 signaling. In particular, inactivation of synaptic output of

DANs positive for TH-Gal4 as well as loss of Dop1R2 in ab-type

KCs reduced the increase in odor tracking from trial to trial, while

not affecting the speed at first odor stimulation. These data sug-

gest that TH+ DANs promote goal-directed movement, i.e., odor

tracking, through a Dop1R2-dependent mechanism in KCs.

We find that MBON-g1pedc>ab, which receives dopami-

nergic input by PPL1-g1pedc (Aso et al., 2014a, 2014b; Yama-

gata et al., 2015), is required for odor tracking (see also Tsao

et al., 2018). Moreover, we also observed a trial-to-trial decrease

in odor response of thisMBON,matching the dopamine-induced

synaptic depression previously observed in MBONs upon

learning (Cohn et al., 2015; Hige et al., 2015; Owald et al.,

2015). Notably, PPL1-g1pedc activates Dop1R2 in MBON-

g1pedc>ab, a signal recently found to be critical for appetitive

long-term memory (Pavlowsky et al., 2018). Nevertheless, it

appears that, in addition to PPL1-g1pedc, other DANs regulate

behavioral persistence by modulating in particular ab-KCs. It is

intriguing to speculate about a common function of Dop1R2 in

the formation of long-lasting aversive memory induced by

repeatedly pairing odor with an aversive experience (Plaçais

et al., 2012, 2017) and the behavior studied here—increased

and persistent expression of a behavior induced by the experi-

ence of repeated failure to reach a goal.

Our experimental data further implicated MBON-a2sc, which

is connected to MBON-g1pedc>ab (Takemura et al., 2017).

Our calcium imaging data are consistent with an inhibitory

interaction between the two MBONs. However, some of our
behavioral data and prior imaging data (Perisse et al., 2016) do

not support an inhibitory connection. Furthermore, MBON-

g1pedc>ab projects to other brain regions and downstream tar-

gets, and similarly MBON-a2sc receives additional inputs—all of

which could be equally or more important for persistent behavior

than a direct connection between these two MBONs. Finally,

some DANs respond tomovement (Aimon et al., 2019), including

PPL1-g2a’1/MV1 (Berry et al., 2015). Although we did not find an

essential role of this particular neuron in odor tracking persis-

tence, movement might contribute to the activity of MBONs re-

sponding the odorant.

Remarkably, MBON-a2sc connects the MB to neurons within

the LH (Dolan et al., 2018). Thus, we speculate that the LH might

assign an odor to its corresponding behavioral category, such as

‘‘food-related’’ for vinegar (Dolan et al., 2018), while the MB acts

as a top-down control to gauge the expression of an innate

behavior (i.e., tracking an appetitive odor) according to state

and experience.

Our behavioral data led us to propose a circuit model (Fig-

ure 7N). Using computational modeling, we have tested whether

the MB network including DANs and MBONs could, in theory,

produce the observed behavior (Figures S5H–S5O; STAR

Methods). Indeed, we find that a simplified recurrent circuit of

KCs, DANs, and MBONs (Eichler et al., 2017; Takemura et al.,

2017) can account for the observed behavioral persistence and

also the measured MBON-g1pedc>ab odor responses. While

this model cannot replace experimental evidence, it forms a use-

ful theoretical framework for future studies on the role of the MB

in behavioral persistence.

Based on our present data and computational predictions, we

propose a model by which the recurrent circuit architecture of

the MB, in addition to storing information for future behavior, is

ideally suited to maintain and gradually change ongoing

behavior, for instance bymodulating output of the LH, according

to the animal’s internal state and needs.

The use of an olfactory treadmill has allowed us to dissect the

different aspects of a food search. In particular, how does food

and feeding suppress food search if the sensory cue, the odor,

is still present? OA-VPM4 connects feeding centers (i.e., SEZ)

directly with odor tracking-promotingMBON-g1pedc>ab and in-

hibits its activity suggesting an inhibitory connection between

VPM4 and the MBON. Nevertheless, we cannot exclude that

OA-VPM4 signals through multiple mechanisms including OA

and possibly other neurotransmitters. In addition, a recent study

showed that activation of VPM4 promotes proboscis extension

to sugar (Youn et al., 2018). Although a direct role in taste detec-

tion through pharynx or labellum appears unlikely (data not

shown and Youn et al., 2018), it is possible that feeding behavior

itself (e.g., lymphatic sugar, food texture, activity of feedingmus-

cles) are detected and/or promoted by these neurons and then

brought to the MB. We propose that VPM4 is a direct mediator

between olfactory-guided food search and the rewarding expe-

rience of feeding and related behavior.

Conclusions
Our data provide a neural circuit mechanism empowering flies to

express and prioritize behavior in a need- and state-dependent

manner.
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It is exciting to speculate that fundamentally similar circuit mo-

tifs might exist in NE and DA neuron-containing circuits in the

mammalian brain, governing the organization of behavior in a

flexible and context-dependent manner by integrating internal

and external context. For instance, noradrenergic neurons of

the brainstem nucleus of the solitary tract (NST) receive taste in-

formation, and input from the gastrointestinal tracts, lungs, and

heart (Carleton et al., 2010). Neurons in the NST project to mul-

tiple brain regions including the amygdala, hypothalamus, and

insular cortex (Carleton et al., 2010), all of which receive internal

state as well as other sensory information.

Our data in the fly provide an experimental and theoretical

framework for a better understanding of the fundamental circuit

mechanisms underpinning neuromodulation of context-depen-

dent behavioral persistence and withdrawal.
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STAR-METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mouse Alexa488 Molecular Probes AB_221544

Anti-Mouse Alexa633 Molecular Probes AB_141431

Anti-Rabbit Alexa568 Molecular Probes AB_141416

Anti-Rabbit Alexa633 Molecular Probes AB_2535731

Anti-Rat Alexa568 Molecular Probes AB_141874

Mouse monoclonal anti-ChAT Yasuyama et al., 1995 N/A

Mouse monoclonal anti-OA Jena Bioscience AB_2315000

Rabbit polyclonal anti-dsRed Clontech AB_10013483

Rabbit polyclonal anti-Tyr Millipore AB_11215460

Rat monoclonal anti-GFP [3H9] Chromotek AB_10773374

Rat monoclonal anti-Ncadherin DSHB AB_528121

Experimental Models: Organisms/Strains

D.mel/Canton-S Bloomington DSC FlyBase: FBst0064349

D.mel/Dop1R1attP Gift from Vanessa Ruta N/A

D.mel/Dop1R2attP Keleman et al., 2012 FlyBase: FBal0283280

D.mel/GMR58E02-Gal4 Bloomington DSC FlyBase: FBst0041347

D.mel/GMR64C08-Gal4 Bloomington DSC FlyBase: FBst0039299

D.mel/GMR95A10-LexA Bloomington DSC FlyBase: FBst0061633

D.mel/Gr43a-Gal4 Miyamoto et al., 2012 FlyBase: FBti0168340

D.mel/Gr5a-Gal4 Bloomington DSC FlyBase: FBst0057592

D.mel/LexAop2-mCD8-GFP Bloomington DSC FlyBase: FBst0056182

D.mel/LexAop-P2X2 Bloomington DSC FlyBase: FBst0076030

D.mel/MB10B Janelia RC FlyBase: FBst0068293

D.mel/MB112C Janelia RC FlyBase: FBst0068263

D.mel/MB113C Janelia RC FlyBase: FBst0068264

D.mel/MB11B Janelia RC FlyBase: FBst0068294

D.mel/MB131B Janelia RC FlyBase: FBst0068265

D.mel/MB152B Janelia RC FlyBase: FBst0068266

D.mel/MB185B Janelia RC FlyBase: FBst0068267

D.mel/MB18B Janelia RC FlyBase: FBst0068296

D.mel/MB210B Janelia RC FlyBase: FBst0068272

D.mel/MB22B Janelia RC FlyBase: FBst0068298

D.mel/MB242A Janelia RC FlyBase: FBst0068307

D.mel/MB27B Janelia RC FlyBase: FBst0068301

D.mel/MB28B Janelia RC N/A

D.mel/MB298B Janelia RC FlyBase: FBst0068309

D.mel/MB2B Janelia RC FlyBase: FBst0068305

D.mel/MB310C Janelia RC FlyBase: FBst0068313

D.mel/MB320C Janelia RC FlyBase: FBst0068253

D.mel/MB355B Janelia RC N/A

D.mel/MB364B Janelia RC FlyBase: FBst0068318

D.mel/MB370B Janelia RC FlyBase: FBst0068319

D.mel/MB371B Janelia RC FlyBase: FBst0068383

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

D.mel/MB399B Janelia RC FlyBase: FBst0068369

D.mel/MB417B Janelia RC FlyBase: FBst0068321

D.mel/MB418B Janelia RC FlyBase: FBst0068322

D.mel/MB419B Janelia RC FlyBase: FBst0068323

D.mel/MB433B Janelia RC FlyBase: FBst0068324

D.mel/MB434B Janelia RC FlyBase: FBst0068325

D.mel/MB438B Janelia RC FlyBase: FBst0068326

D.mel/MB461B Janelia RC FlyBase: FBst0068327

D.mel/MB463B Janelia RC FlyBase: FBst0068370

D.mel/MB477B Janelia RC FlyBase: FBst0068328

D.mel/MB504B Janelia RC FlyBase: FBst0068329

D.mel/MB50B Janelia RC Flybase: FBst0068365

D.mel/MB51B Janelia RC FlyBase: FBst0068275

D.mel/MB52B Janelia RC N/A

D.mel/MB542B Janelia RC FlyBase: FBst0068372

D.mel/MB543B Janelia RC FlyBase: FBst0068335

D.mel/MB549C Janelia RC FlyBase: FBst0068373

D.mel/MB552B Janelia RC N/A

D.mel/MB57B Janelia RC FlyBase: FBst0068277

D.mel/MB58B Janelia RC FlyBase: FBst0068278

D.mel/MB5B Janelia RC FlyBase: FBst0068306

D.mel/MB60B Janelia RC FlyBase: FBst0068279

D.mel/MB74C Janelia RC FlyBase: FBst0068282

D.mel/MB80C Janelia RC FlyBase: FBst0068285

D.mel/MB82C Janelia RC FlyBase: FBst0068286

D.mel/MB83C Janelia RC FlyBase: FBst0068287

D.mel/MB8B Janelia RC FlyBase: FBst0068291

D.mel/MB93C Janelia RC FlyBase: FBst0068289

D.mel/MB9B Janelia RC FlyBase: FBst0068292

D.mel/pBDP-Gal4U Bloomington DSC FlyBase: FBst0068384

D.mel/Tdc2-Gal4 Bloomington DSC FlyBase: FBst0009313

D.mel/TH-C1-Gal4 Liu et al., 2012 FlyBase: FBtp0083567

D.mel/TH-D1-Gal4 Liu et al., 2012 FlyBase: FBtp0083568

D.mel/TH-F1-Gal4 Liu et al., 2012 FlyBase: FBtp0083570

D.mel/TH-Gal4 Bloomington DSC FlyBase: FBst0008848

D.mel/UAS-CsChrimson Bloomington DSC FlyBase: FBst0055134

D.mel/UAS-DenMark Bloomington DSC FlyBase: FBst0033062

D.mel/UAS-GCaMP6f Bloomington DSC FlyBase: FBst0042747

D.mel/UAS-mCD8-GFP Bloomington DSC FlyBase: FBst0030001

D.mel/UAS-Shibirets1 Bloomington DSC FlyBase: FBst0044222

D.mel/UAS-syt-GFP Bloomington DSC FlyBase: FBst0006926

D.mel/w1118 Bloomington DSC FlyBase: FBst0003605

D.mel/UAS-Dop1R2i Bloomington DSC FlyBase: FBti0157409

Software and Algorithms

Matplotlib 1.4.2 Matplotlib https://matplotlib.org

Numpy 1.8 Numpy https://numpy.org

Prism 6 and 7 GraphPad https://www.graphpad.com/scientific-

software/prism
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Python 2.7 Python https://www.python.org

Pyvttbl 0.5.2.2 Github https://github.com/rogerlew/pyvttbl

Scipy.stats 0.14 Scipy https://scipy.org

pCLAMP 10.3 Molecular Devices https://www.moleculardevices.com/

Igor Pro 6.37 Wave Metrics https://www.wavemetrics.com/

NeuroMatic 3.0 Rothman and Silver, 2018 http://neuromatic.thinkrandom.com/index.html

LAS AF E6000 and LAS X Leica Microsystems https://www.leica-microsystems.com/

FV10-ASW Olympus https://www.olympus-lifescience.com/en/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ilona C.

Grunwald Kadow (ilona.grunwald@tum.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Flies were raised at 25�C, 60% humidity, with a 12/12 hours light/dark cycle on a standard cornmeal media. For optogenetic

experiments, adult flies were collected at eclosion, kept under blue light only conditions (470nm, 0,05 mW/mm2) on an all-trans-retinal

supplemented food (1:250). Fly lines were obtained from the Bloomington stock centers or directly from Janelia Research Campus.

METHOD DETAILS

Spherical Treadmill behavioral assay
The spherical treadmill was built according to (Seelig et al., 2010) with several modifications to accommodate olfactory instead of

visual stimulation protocols. Fly tethering was performed under cold anesthesia and flies were immediately transferred onto the

treadmill. After 3 min of acclimatization, experiments were initialized and controlled via a custom-written Python program. Flies

that failed to acclimatize and reach a minimum speed of 1.5 mm/s before the first stimulus were discarded. An experiment consisted

of 10 consecutive trials (with the exception of 6 trials for CO2 experiments to prevent anesthesia), which were separated by semi-

randomized intervals of 60 ± 2-20 s. Each trial was recorded for a minimum of 52 s. The recording was divided into pre-stimulation

(20 s), stimulation (dependent on experimental procedure) and post-stimulation (30 s) periods. For open-loop experiments, the stim-

ulation period was 12 s. The closed-loop experiments utilized a short open-loop phase (2 s), followed by a closed-loop phase. In the

closed-loop phase, the fly controlled the odor stimulation length, i.e., the odor channel was kept open as long as the online speed

criteria were met (> 0 mm/s for 100 ms). The online speed data acquisition rate in the cardinal directions was �4kHz for all experi-

ments. The recorded speed data were down-sampled to 10 Hz by summation. Butterworth filtering was employed in all open-loop

data after down-sampling. All data analyses were performed with Python 2.7, numpy 1.8, scipy.stats (0.14), pyvttbl (0.5.2.2) and

GraphPad Prism 7. Running and absolute turning average speeds were calculated as averages of 100 ms data points collected at

cardinal directions in the respective phases of a trial. To minimize the impact of tethering artifacts, 100 ms data points for absolute

turning speeds of each single trial were filteredwith average absolute turning values, whichwere computed from thewhole length of a

respective trial. Average run time was defined as the initial uninterrupted running (speed > 0 mm/s) bout time length upon odor

contact. Average run activity was measured as the fraction of odor stimulation time, where flies showed running speed higher

than 0 mm/s. A stop was defined as not moving (0 mm/s) for at least 100 ms. Average run plots display millimeters run per second

averaged across the entire stimulus period, and therefore also reflect early stopping (before the end of stimulus speed) and slower

speeds. This form of display wasmost frequently used in figure panels to illustrate the change in speed and track length over trials in a

combined manner. Data visualization was done with matplotlib (1.4.2). Optogenetic activation on the ball was achieved by using a

single high-power mounted LED at 617 nm, calibrated at 30 W/mm2 (M617, Thorlabs). Light stimulation in the absence of frontal

air or odor stimulation induced some attraction and forward running toward the light source. This attraction was independent of

the genotype of the animal and was seen also in wild-type Canton S flies. Similarly, simultaneous odor and light stimulation had

no effect on Gal4 control flies. For appetitive olfactory stimulus delivery on the treadmill, a custom-made PTFE (Teflon) 4 mm

tube was used and stationed at 3 mm distance from the tethered fly. The air speed was set to 100 mL/min via a Natec

Sensors mass-flow controller. A balsamic vinegar solution (Alnatura Aceto Balsamico, Germany) was prepared daily at 20% v/v

dilution in 100 mL Schott bottles. The vinegar concentration was measured with a miniPID (Aurora Scientific, miniPID 200B) and

Arduino Uno at 100 Hz. PID recordings were filtered with Butterworth. The miniPID was calibrated with ethyl-butyrate according
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to (Semmelhack andWang, 2009). For CO2 delivery, a CO2 streamwas injected via a PTFE syringe inserted into the 100mL/min pres-

sured air main stream. The auxiliary line carried pure CO2 at 50 mL/min.

Optogenetic and olfactory 4-arm maze
The 4-arm arena is based on the optogenetics-only arena described in (Aso et al., 2014b). The air/odor delivery was achieved via

4 passive solvent channels (Schott bottles containing Millipore water or vinegar solution 20% v/v) and a rotary pump (Thomas

G12/01-4 EB). The rotary pump (�200 mL/min) was connected to an outlet at the arena center. The negative pressure generated

by the pump facilitates drawing headspace in the passive solvent channels. For rapid switching between odor channels and target

quadrants, a set of solenoid valves (Festo MFH-3-MF) were used. For optogenetics, a custom assembled LED array (Amber SMD

PLCC2) was utilized to stimulate each quadrant of the arena at 617nm. The arena was illuminated via IR-LEDs and experiments

were recorded with a CMOS camera (FLIR Flea3 MPMono). The behavioral analysis expressed as preference index ((number of flies

in stimulus quadrants - number of flies in non-stimulus quadrants) / total number of flies). Hardware control and data acquisition was

achieved via Arduino Mega and in-house MATLAB scripts. Examples of tracking data can be seen in Videos S1 and S2.

T-maze
The two-choice population assay or T-maze was performed as previously described in (Lewis et al., 2015). Briefly, flies were tested in

groups of �60 in a non-aspirated T-maze and were allowed 1 min to respond to stimuli. Experimentation was carried out in climate-

controlled boxes at 32�C and 60% rH. A preference index (PI) was calculated by subtracting the number of flies on the air side by the

number of flies on the stimulus side and normalizing by the total number of flies. Statistical analysis was performed using the Kruskal-

Wallis’ test and the Dunn’s multiple comparisons post hoc test using GraphPad Prism 6.

Immunohistochemistry
Adult (4-7 days old) fly brains were dissected, fixed and stained as described previously (Lewis et al., 2015). All microscopy was

performed at a Leica SP8 confocal microscope. Images were processed using ImageJ and Adobe Photoshop.

Electron microscopy and connectomics analysis
Reconstructions are based on an ssTEM (serial section transmission electron microscope) dataset comprising an entire adult fly

brain (Zheng et al., 2018). Neuron skeletons were manually reconstructed using CATMAID (https://catmaid.readthedocs.org)

(Saalfeld et al., 2009; Schneider-Mizell et al., 2016). MBON-g1pedc>ab was initially identified by sampling downstream of KCs in

the g1/peduncle compartment. VPM3 and VPM4 were found by semi-random sampling of synaptic inputs of MBON-g1pedc>ab

in the g1 compartment. For identification, their microtubule-containing backbones were reconstructed and compared with published

light-level data (Aso et al., 2014a; Busch et al., 2009). Subsequently, their axonal branches in the g1 compartment were reconstructed

to completion and synaptic sites were annotated. Synaptic connections described here represent fast, chemical synapses matching

previously described typical criteria: thick black active zones, pre- (e.g., T-bar, vesicles) and postsynaptic membrane specializations

(Prokop and Meinertzhagen, 2006). Visualization and analysis were performed using open-source R (https://github.com/jefferis/nat

and https://github.com/jefferis/elmr; ((Manton et al., 2014)) and Python (https://github.com/schlegelp/pymaid) libraries. Please see

also Videos S3 and S4 for details on imaged synapses.

Ex vivo and in vivo Calcium Imaging
Calcium imaging experiments were performed on 4-8 days old MB112C-Gal4;UAS-GCaMP6f flies, and MB80C-Gal4;UAS-

GCaMP6f (for in vivo, odor stimulation), and on 4-7 days old R95A10-lexA,lexAop-P2X2;MB112C-Gal4;UAS-GCaMP6f flies and their

controls +,lexAop-P2X2;MB112C-Gal4;UAS-GCaMP6f (for in vivo, ATP and/or odor stimulation).

Preparations of flies for in vivo experiments were prepared as previously described (Br€acker et al., 2013). Preparations were

imaged using a Leica DM6000FS fluorescent microscope equipped with a 40x water immersion objective and a Leica DFC 9000

GT fluorescent camera or a Olympus FV1000 two-photon system with BX61WI microscope and a 40x objective and a mode-locked

T:Sapphire Mai Tai DeepSee laser at 910 nm to excite the GCaMP6 fluorescence. All images were acquired with either the Leica LAS

X or the Olympus FV10-ASW image acquisition software. In order to minimize the brain movement of in vivo preparations under the

two-photon microscope, a drop of 1% low melting temperature agarose (NuSieveGTG, Lonza) in imaging buffer maintained at 37�C
was added to the exposed brain. A custom-made odor delivery system with mass flow controllers was used for vinegar stimulation.

The odor was delivered in a continuous airstream (1000 mL/min) through a 8-mm Teflon tube placed�1 cm away from the fly. In vivo

two-photon time series data were acquired at a rate of �4 frames/s with 175 3 175 pixel resolution.

For experiments including stimulation of P2X2with ATP, ATPwas either added to the buffer on top of the brain of a living fly to a final

concentration of 2 mM or, when paired with odor stimulations, using a custom-built perfusion system (�2 mL/min, 2mM). Images

were acquired at a rate of 20 frames/s (static conditions) or 16 frames/s, with 8x8 binning.

Changes in fluorescence intensity weremeasured inmanually drawn regions of interest (ROI) using the LASAF E6000 Lite, LAS X or

the Olympus FV10-ASW software. Relative changes in fluorescence intensity were defined as DF/F = 100* (Fi – F0)/F0 for the i frames

after stimulation. Fluorescence background, F0, is the average fluorescence of 5 frames (�1 s; in vivo, two-photon), 20 frames (�1 s;

in vivo, ATP static) or 17 frames (�1 s; in vivo, ATP perfused).
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Computational model
We assumed that the KC and DAN populations have neuronal activity governed by the following equations:

tm
dxðtÞ
dt

= � xðtÞ+axðtÞ+ byðtÞ+ IðtÞ
tm
dyðtÞ
dt

= � yðtÞ+axðtÞ+ byðtÞ+ IðtÞ

where xðtÞ denotes KC activity and yðtÞ denotes DAN activity. During odor presentation, the input IðtÞ is set to one, otherwise it is zero.

a is the connectivity strength of KC-KC and KC-DAN synapses (Figure S5J, gray), and b corresponds to DAN-DAN and DAN-KC (Fig-

ure S5J, black). The time constant of integration for each population, tm, was fixed according KC responses observed in response to

prolonged stimulus presentation (Galili et al., 2014). It is important to mention that this system can be analytically solved in the case of

constant input. In matrix form with r!ðtÞ = ½xðtÞ; yðtÞ�T , we can rewrite the equation as:

tm
d r
!ðtÞ
dt

= ðW � IÞ r!+ I
!ðtÞ

where I is the identity matrix. This linear equation can be solved in terms of the eigenvalues l1 =a+ b; l2 = 0 and corresponding ei-

genvectors v1
! = ½1;1�T ; v2!= ½1;�1�T of W, and the main property of this system is the re-scaling of the effective time constant of

neuronal activity projected onto the eigenmodes, t01;2 = tm=ð1� l1;2Þ. Notice that for l/1 the effective time constant goes to infinity,

resulting in a perfect integration of the input without decay. Therefore, for values of connectivity with a + b/1, KCs and DANs will

maintain persistent activity even after stimulus offset. We explored this property of the recurrent network to generate the persistent

activity consistent with behavioral observations (see Figure 1).

To directly comparemodel output of persistent neural activity to experimental observations of persistent running, we first applied a

transfer function to convert the normalized sum of KC and DAN activity to MBON activity in the same range as the data (Figure 3D).

Specifically, we considered an exponential transfer function:

vðzÞ= ae�bz;

where a is a multiplicative constant and b the exponent. Then, to obtain running speeds, we applied another exponential transfer

function to the MBON activity.

Model fitting and parameters
We used the data from Figures 1E and 3D to fit our model’s parameters by minimizing the mean squared error between the model

output (predicted MBON activity and running speed) and the data (average fluorescence change of the peduncle region and

measured average running speed, respectively). We fitted the two parameters of both exponential transfer functions. For perturba-

tions up to 20% to the sum a + b � 1 we still observed consistent persistent activity in the network (data not shown). For the results

reported in Figure S5 we fixed the perturbation to 10%. The fitted parameters of the exponential transfer function in Figure S5O are

a = 540:5;b= 0:7 and of Figure S5M are a = 65:3;b = 2:6. The remaining parameters were fixed: tm = 12 s, a = 0:5, and b = 0:4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
Statistical analyses were performed in Graphpad 7, and Python 2.7 with Pyvttbl (0.5.2.2) and Scipy.stats (0.14) packages. All results

of the statistical analysis can be found in Table S1. Outliers were removed from all calculations with ROUT (Graphpad, Q = 5%) anal-

ysis. Average speeds and run times, as described in the ‘Spherical Treadmill behavioral assay’ section above, were calculated for the

indicated time windows (pre, stim, post). Baseline running speeds were analyzed before initial odor stimulation (see Table S1).

Average run speeds show fly performance from odor onset until odor termination per trial or over all trials as indicated.

In Figures 1B and 1C, wild-type CS data were analyzed under different time windows (before, during and after odor exposure) for

run and turn speeds with one-way ANOVA and Tukey’s multiple comparisons as a post hoc test. To further inspect how run speeds

over ten trials changed for the same dataset, the run speeds during the odor stimulation phase in the later trials were compared to the

first trial in Dunnett’s multiple comparisons test, after one-way ANOVA test (Figure 1E). During the closed-loop analyses, average run

times did not conform normality. Therefore, total run times were calculated for individual flies and used in subsequent statistical anal-

ysis. Total run times, and run speeds were compared with one-way ANOVA and Tukey’s multiple post hoc comparisons (Figures 1M

and 1N).

In all subsequent spherical treadmill experiments (except S2G), two-way repeated-measures ANOVA was used. The genotypes

were considered independent factors. Only when the same set of flies were analyzed under different conditions (Figure S1E: Air

versus CO2), both two factors (trials and conditions) were considered as the repeating factors in two-way repeated-mea-

sures ANOVA.
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Main genotype or condition effects, independent of trial-to-trial differences, were depicted in boxplots. p values in the boxplots

were inferred directly from two-way repeated-measures ANOVA for two groups (Figures 2B, 2D, 2F, 2H, 4E, 7I, 7K, 7M, S1D,

S1E, S2D, and S2F) and from Tukey’s multiple comparisons for more than two groups (Figures 1F, 1J, 4B, 5B, 5D, 6H, 7C, S5D,

S5F, S5H, and S6E; for Figures 7E, S7C, and S7E only, Dunnett’s test). Trial-to-trial post hoc comparisons were shown in line graphs,

where each genotype was contrasted to relevant control group for each ten trials individually (i.e., trial 1 test group versus trial 1 con-

trol group etc.). When a single experimental group was present, Sidak’s multiple comparisons were utilized (Figures 2B, 2D, 2F, 2H,

4E, 7I, 7K, 7M, S1D, S1E, S2D, and S2F). In other conditions where more than one experimental group was measured against a con-

trol group, Dunnett’s multiple comparisons test were used (Figures 1G, 1H, 4B, 5B, 5D, 6H, 7C, 7E, S5D, S5F, S5H, S6E, S7C,

and S7E).

Exceptions to the two-way analyses were as follows (Figures 1M, 1N, and S2G). During the closed-loop analyses (Figures 1M and

1N), average run times did not conform normality. Therefore, total run times were calculated for individual flies and used in subse-

quent statistical analysis. Total run times, and run speeds were compared with one-way ANOVA and Tukey’s multiple post hoc com-

parisons (Figures 1M and 1N). In Figure S2G, only one repeating factor was tested. Consequently, one-way repeated-measures

ANOVA was employed and succeeded by a Dunnett’s multiple comparisons post hoc test for all trials.

Baseline speed comparisons were handled via Welch’s t test for two groups and one-way ANOVA and Tukey’s multiple post hoc

comparisons for three groups (Table S1). All post hoc tests were chosen according to Graphpad’s recommendations. For all ana-

lyses, statistical notations are as follows: ‘ ns ’ p > 0.05, ’ * ‘ p < 0.05, ‘ ** ’ p < 0.01, ‘ *** ‘ p < 0.001, ‘ **** ‘ p < 0.0001. In all panels,

error bars denote SEM.

Ex vivo and in vivo Calcium Imaging
DF/F traces were analyzed using the NeuroMatic 3.0 package for IgorPro 6.37 (WaveMetrics). Figure 3: The area under the curve

(AUC) was computed for the entire stimulus period (MBON-g1pedc>ab; Figures 3A–3D), for the onset peak odor response (between

0 and 5 s after stimulus onset; MBON-a2sc; Figures 3F–3H) and for the offset peak odor response (between 0 and 20 s after stimulus

offset, the longest peak duration observed in the dataset; MBON-a2sc; Figure 3I). The offset peak decay was defined as the time

constant of a single exponential fit of the peak decay (Figure 3J). AUCs and decay values were plotted over trials and compared using

two-way repeated-measure ANOVA (Prism 7, GraphPad). For Figure 6D: The negative peak amplitude was computed as the average

fluorescence for 5 s, 20 s after ATP application. Data were compared using an unpaired t test with Welch’s correction for unequal

variances (Prism 7, GraphPad). For Figure 6F: Data are expressed as the difference of AUC before and after ATP bath application,

normalized by the average difference. Data were compared using an unpaired t test (Prism 7, GraphPad). Pseudo-colored images

were generated using a custom-written MATLAB program and ImageJ.

DATA AND CODE AVAILABILITY

Source data and analysis code supporting the current study have not been deposited in a public repository, but are available from the

corresponding author on request.
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