21 research outputs found
Detailed Multiplex Analysis of SARS-CoV-2 Specific Antibodies in COVID-19 Disease.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadA detailed understanding of the antibody response against SARS-CoV-2 is of high importance, especially with the emergence of novel vaccines. A multiplex-based assay, analyzing IgG, IgM, and IgA antibodies against the receptor binding domain (RBD), spike 1 (S1), and nucleocapsid proteins of the SARS-CoV-2 virus was set up. The multiplex-based analysis was calibrated against the ElecsysÂŽ Anti-SARS-CoV-2 assay on a Roche CobasÂŽ instrument, using positive and negative samples. The calibration of the multiplex based assay yielded a sensitivity of 100% and a specificity of 97.7%. SARS-CoV-2 specific antibody levels were analyzed by multiplex in 251 samples from 221 patients. A significant increase in all antibody types (IgM, IgG, and IgA) against RBD was observed between the first and the third weeks of disease. Additionally, the S1 IgG antibody response increased significantly between weeks 1, 2, and 3 of disease. Class switching appeared to occur earlier for IgA than for IgG. Patients requiring hospital admission and intensive care had higher levels of SARS-CoV-2 specific IgA levels than outpatients. These findings describe the initial antibody response during the first weeks of disease and demonstrate the importance of analyzing different antibody isotypes against multiple antigens and include IgA when examining the immunological response to COVID-19.Student Innovation Fun
HMG-CoA reductase is a potential therapeutic target for migraine:a mendelian randomization study
Statins are thought to have positive effects on migraine but existing data are inconclusive. We aimed to evaluate the causal effect of such drugs on migraines using Mendelian randomization. We used four types of genetic instruments as proxies for HMG-CoA reductase inhibition. We included the expression quantitative trait loci of the HMG-CoA reductase gene and genetic variation within or near the HMG-CoA reductase gene region. Variants were associated with low-density lipoprotein cholesterol, apolipoprotein B, and total cholesterol. Genome-wide association study summary data for the three lipids were obtained from the UK Biobank. Comparable data for migraine were obtained from the International Headache Genetic Consortium and the FinnGen Consortium. Inverse variance weighting method was used for the primary analysis. Additional analyses included pleiotropic robust methods, colocalization, and meta-analysis. Genetically determined high expression of HMG-CoA reductase was associated with an increased risk of migraines (OR = 1.55, 95% CI 1.30â1.84, P = 6.87 Ă 10â7). Similarly, three genetically determined HMG-CoA reductase-mediated lipids were associated with an increased risk of migraine. These conclusions were consistent across meta-analyses. We found no evidence of bias caused by pleiotropy or genetic confounding factors. These findings support the hypothesis that statins can be used to treat migraine.</p
HMG-CoA reductase is a potential therapeutic target for migraine:a mendelian randomization study
Statins are thought to have positive effects on migraine but existing data are inconclusive. We aimed to evaluate the causal effect of such drugs on migraines using Mendelian randomization. We used four types of genetic instruments as proxies for HMG-CoA reductase inhibition. We included the expression quantitative trait loci of the HMG-CoA reductase gene and genetic variation within or near the HMG-CoA reductase gene region. Variants were associated with low-density lipoprotein cholesterol, apolipoprotein B, and total cholesterol. Genome-wide association study summary data for the three lipids were obtained from the UK Biobank. Comparable data for migraine were obtained from the International Headache Genetic Consortium and the FinnGen Consortium. Inverse variance weighting method was used for the primary analysis. Additional analyses included pleiotropic robust methods, colocalization, and meta-analysis. Genetically determined high expression of HMG-CoA reductase was associated with an increased risk of migraines (OR = 1.55, 95% CI 1.30â1.84, P = 6.87 Ă 10â7). Similarly, three genetically determined HMG-CoA reductase-mediated lipids were associated with an increased risk of migraine. These conclusions were consistent across meta-analyses. We found no evidence of bias caused by pleiotropy or genetic confounding factors. These findings support the hypothesis that statins can be used to treat migraine.</p
Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura
Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.</p
A genome-wide meta-analysis uncovers six sequence variants conferring risk of vertigo.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadVertigo is the leading symptom of vestibular disorders and a major risk factor for falls. In a genome-wide association study of vertigo (Ncasesâ=â48,072, Ncontrolsâ=â894,541), we uncovered an association with six common sequence variants in individuals of European ancestry, including missense variants in ZNF91, OTOG, OTOGL, and TECTA, and a cis-eQTL for ARMC9. The association of variants in ZNF91, OTOGL, and OTOP1 was driven by an association with benign paroxysmal positional vertigo. Using previous reports of sequence variants associating with age-related hearing impairment and motion sickness, we found eight additional variants that associate with vertigo. Although disorders of the auditory and the vestibular system may co-occur, none of the six genome-wide significant vertigo variants were associated with hearing loss and only one was associated with age-related hearing impairment. Our results uncovered sequence variants associating with vertigo in a genome-wide association study and implicated genes with known roles in inner ear development, maintenance, and disease.UK Biobank Resource
European Commission
European Commission Joint Research Centre
United States Department of Health & Human Services
National Institutes of Health (NIH) - US
Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles
Migraine affects over a billion individuals worldwide but its genetic underpinning remains largely unknown. Here, we performed a genome-wide association study of 102,084 migraine cases and 771,257 controls and identified 123 loci, of which 86 are previously unknown. These loci provide an opportunity to evaluate shared and distinct genetic components in the two main migraine subtypes: migraine with aura and migraine without aura. Stratification of the risk loci using 29,679 cases with subtype information indicated three risk variants that seem specific for migraine with aura (in HMOX2, CACNA1A and MPPED2), two that seem specific for migraine without aura (near SPINK2 and near FECH) and nine that increase susceptibility for migraine regardless of subtype. The new risk loci include genes encoding recent migraine-specific drug targets, namely calcitonin gene-related peptide (CALCA/CALCB) and serotonin 1F receptor (HTR1F). Overall, genomic annotations among migraine-associated variants were enriched in both vascular and central nervous system tissue/cell types, supporting unequivocally that neurovascular mechanisms underlie migraine pathophysiology.publishedVersionPeer reviewe
Genetic causal relationship between immune diseases and migraine: a Mendelian randomization study
BackgroundMigraine has an increased prevalence in several immune disorders, but genetic cause-effect relationships remain unclear. Mendelian randomization (MR) was used in this study to explore whether immune diseases are causally associated with migraine and its subtypes.MethodsWe conducted a two-sample bidirectional multivariate Mendelian randomization study. Single-nucleotide polymorphisms (SNP) for six immune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes mellitus (T1D), allergic rhinitis (AR), asthma and psoriasis, were used as genetic instrumental variables. Summary statistics for migraine were obtained from 3 databases: the International Headache Genetics Consortium (IHGC), UK Biobank, and FinnGen study. MR analyses were performed per outcome database for each exposure and subsequently meta-analyzed. Reverse MR analysis was performed to determine whether migraine were risk factors for immune diseases. In addition, we conducted a genetic correlation to identify shared genetic variants for these two associations.ResultsNo significant causal relationship was found between immune diseases and migraine and its subtypes. These results were robust with a series of sensitivity analyses. Using the linkage disequilibrium score regression method (LDSC), we detected no genetic correlation between migraine and immune diseases.ConclusionThe evidence from our study does not support a causal relationship between immune diseases and migraine. The mechanisms underlying the frequent comorbidity of migraine and several immune diseases need to be further elucidated
Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadMigraine affects over a billion individuals worldwide but its genetic underpinning remains largely unknown. Here, we performed a genome-wide association study of 102,084 migraine cases and 771,257 controls and identified 123 loci, of which 86 are previously unknown. These loci provide an opportunity to evaluate shared and distinct genetic components in the two main migraine subtypes: migraine with aura and migraine without aura. Stratification of the risk loci using 29,679 cases with subtype information indicated three risk variants that seem specific for migraine with aura (in HMOX2, CACNA1A and MPPED2), two that seem specific for migraine without aura (near SPINK2 and near FECH) and nine that increase susceptibility for migraine regardless of subtype. The new risk loci include genes encoding recent migraine-specific drug targets, namely calcitonin gene-related peptide (CALCA/CALCB) and serotonin 1F receptor (HTR1F). Overall, genomic annotations among migraine-associated variants were enriched in both vascular and central nervous system tissue/cell types, supporting unequivocally that neurovascular mechanisms underlie migraine pathophysiology.US National Institute of Neurological Disorders and Stroke (NINDS) of the US National Institutes of Health (NIH)
Finnish innovation fund Sitra
Finska Lakaresallskapet
Academy of Finland
Sigrid Juselius Foundation
Academy of Finland
Appeared in source as:Academy of Finland Center of Excellence in Complex Disease Genetics
Finnish Foundation for Cardiovascular Research
Novo Nordisk Foundation
Novocure Limited
CANDY foundation (CEHEAD)
South-Eastern Norway Regional Health Authorit