40 research outputs found

    From self-interest to cooperation: extra-pair mating as a driver of relaxed territorial aggression in social neighbourhoods

    Get PDF
    In socially monogamous bird species, males and females tailor their reproductive strategies to that of the other. Interactions are complex, and have elements of both conflict and cooperation. Breeding process is further complicated with the occurrence of matings outside the pair bond, which is a frequent phenomenon in these species. Extra-pair mating has clear benefits for males, but cuckolded males may withdraw care and resources at a cost to females, which produces an unbalanced costs-to-benefits ratios within the mating pair. We used an individual-based model with social networks approach, to study how female extra-pair mating strategies may affect male investment in offspring care and territorial defence. In our model, extra-pair copulation rate is a female-driven strategy; we use two adjustable male traits—care and territorial defence—that co-evolve with that strategy and control the number of extra-pair copulations initiated by a social female. The model utilises very simple rules of behaviours between individuals that lead to the emergence of evolved changes in mating strategies on a large scale. We show how extra-pair copulations initiated by females in their neighbourhood can reduce territorial defence and wasteful aggression between the males across the whole population. We propose that female mating behaviour and male responses are flexible traits that might serve as potential drivers of the evolution of cooperation.publishedVersio

    The bright and dark side of autonomy: How autonomy support and thwarting relate to student motivation and academic functioning

    Get PDF
    According to Self-Determination Theory, autonomy support is essential in fostering optimal learning, growth, and functioning in students across all levels. In contrast, autonomy thwarting is associated with student malfunctioning. The purpose of the current study was to investigate the relationship between perceptions of autonomy support and thwarting, students’ autonomous and controlled motivations, and aspects of student functioning in a higher education setting. The sample consisted of 414 Norwegian university students recruited from introductory calculus courses. Structural equation modeling indicated that perceived autonomy support predicts autonomous motivation and is negatively linked to controlled motivation. Autonomy thwarting is negatively linked to autonomous motivation and positively predicts controlled motivation. We found that autonomous motivation predicts engagement, effort, and learning. Controlled motivation is negatively linked to vitality and engagement, and positively predicts effort. The results are in line with the tenets of Self-Determination Theory, and the present study highlights the importance of providing an autonomy supportive environment during higher education lectures.publishedVersio

    Hormones as adaptive control systems in juvenile fish

    Get PDF
    Growth is an important theme in biology. Physiologists often relate growth rates to hormonal control of essential processes. Ecologists often study growth as a function of gradients or combinations of environmental factors. Fewer studies have investigated the combined effects of environmental and hormonal control on growth. Here, we present an evolutionary optimization model of fish growth that combines internal regulation of growth by hormone levels with the external influence of food availability and predation risk. The model finds a dynamic hormone profile that optimizes fish growth and survival up to 30 cm, and we use the probability of reaching this milestone as a proxy for fitness. The complex web of interrelated hormones and other signalling molecules is simplified to three functions represented by growth hormone, thyroid hormone and orexin. By studying a range from poor to rich environments, we find that the level of food availability in the environment results in different evolutionarily optimal strategies of hormone levels. With more food available, higher levels of hormones are optimal, resulting in higher food intake, standard metabolism and growth. By using this fitness-based approach we also find a consequence of evolutionary optimization of survival on optimal hormone use. Where foraging is risky, the thyroid hormone can be used strategically to increase metabolic potential and the chance of escaping from predators. By comparing model results to empirical observations, many mechanisms can be recognized, for instance a change in pace-of-life due to resource availability, and reduced emphasis on reserves in more stable environments.publishedVersio

    Computational animal welfare: Towards cognitive architecture models of animal sentience, emotion and wellbeing

    Get PDF
    To understand animal wellbeing, we need to consider subjective phenomena and sentience. This is challenging, since these properties are private and cannot be observed directly. Certain motivations, emotions and related internal states can be inferred in animals through experiments that involve choice, learning, generalization and decision-making. Yet, even though there is significant progress in elucidating the neurobiology of human consciousness, animal consciousness is still a mystery. We propose that computational animal welfare science emerges at the intersection of animal behaviour, welfare and computational cognition. By using ideas from cognitive science, we develop a functional and generic definition of subjective phenomena as any process or state of the organism that exists from the first-person perspective and cannot be isolated from the animal subject. We then outline a general cognitive architecture to model simple forms of subjective processes and sentience. This includes evolutionary adaptation which contains top-down attention modulation, predictive processing and subjective simulation by re-entrant (recursive) computations. Thereafter, we show how this approach uses major characteristics of the subjective experience: elementary self-awareness, global workspace and qualia with unity and continuity. This provides a formal framework for process-based modelling of animal needs, subjective states, sentience and wellbeing.publishedVersio

    “Why is this relevant for me?”: increasing content relevance enhances student motivation and vitality

    Get PDF
    The notion that motivation is imperative for students’ psychological well-being and academic functioning is central to Self-Determination Theory (SDT). According to SDT, different types of motivations can co-occur to a various degree with separate outcomes, depending on the extent of experienced degree of autonomy. In the current study, we investigate how making a learning exercise more relevant for higher education STEM students can affect aspects of student functioning mediated through motivation. In a randomized experiment, results indicate that the students who received a more “relevant” assignment (experimental group) experienced more autonomous forms of motivation relative to the students who received a “generic” or “traditional” exercise (control group). Further, the experimental group reported higher levels of vitality and effort relative to the control group. Using a pre- and post-test design measuring changes in emotional affect during the learning activity, we found that the control group reported an increase in negative affect and a decrease in positive affect. Finally, path analysis showed significant relationships between the type of assignment provided and motivation and student functioning

    Adaptive host responses to infection can resemble parasitic manipulation

    Get PDF
    Using a dynamic optimisation model for juvenile fish in stochastic food environments, we investigate optimal hormonal regulation, energy allocation and foraging behaviour of a growing host infected by a parasite that only incurs an energetic cost. We find it optimal for the infected host to have higher levels of orexin, growth and thyroid hormones, resulting in higher activity levels, increased foraging and faster growth. This growth strategy thus displays several of the fingerprints often associated with parasite manipulation: higher levels of metabolic hormones, faster growth, higher allocation to reserves (i.e. parasite-induced gigantism), higher risk-taking and eventually higher predation rate. However, there is no route for manipulation in our model, so these changes reflect adaptive host compensatory responses. Interestingly, several of these changes also increase the fitness of the parasite. Our results call for caution when interpreting observations of gigantism or risky host behaviours as parasite manipulation without further testing.publishedVersio

    Evolution of growth in Gulf of St Lawrence cod?

    Get PDF
    Fishing is often size selective such that the likelihood of capture increases with body size. It has therefore been postulated that fishing could favour evolution of slower growth because smaller size would reduce exposure to fishing gear (e.g. Ricker 1981). A recent study by Swain et al. (2007; hereafter referred to as SSH) makes a valuable attempt to demonstrate such an effect on length-at-age of southern Gulf of St Lawrence cod (Gadus morhua). The strength of their study lies in an innovative combination of three elements. First, as the evolving trait, they used length-at-age 4 years, an age at which cod are representatively sampled but have experienced little fishing mortality. Confounding demographic effects of size-selective fishing were therefore avoided. Second, they had time series of temperature and population density, both possibly affecting length-at-age through phenotypic plasticity. Finally, and as the most innovative element, they linked their approach to quantitative genetics theory. Using a modified breeder's equation, they modelled changes in length-at-age 4 as a function of genetic and environmental components: ΔL4=h2S+βΔE+ϵ. Here ΔL4 and ΔE are differences in length-at-age 4 and environment, respectively, between the focal cohort and its parent generation. S is the selection differential (difference in mean length-at-age 4 between fish observed at age 4 and those observed at reproducing ages). Estimated heritability h2 and parameter β are regression coefficients, and ϵ is a normally distributed error term with zero mean. SSH assumed that the environment can be described by changes in population density Δd and temperature Δt. The key point is that a significant effect of S on ΔL4 would indicate an evolutionary response in length-at-age 4. SSH's statistically favoured regression model was one including both S and Δd; they concluded that the data suggested an evolutionary response to fishing. Of course, as SSH readily pointed out, one cannot rule out the existence of alternative and untested factors. Here, we comment on some caveats in the analysis by SSH. We do not challenge their novel approach, but question some key assumptions and the strength of their conclusions

    Decision-Making From the Animal Perspective: Bridging Ecology and Subjective Cognition

    Get PDF
    Organisms have evolved to trade priorities across various needs, such as growth, survival, and reproduction. In naturally complex environments this incurs high computational costs. Models exist for several types of decisions, e.g., optimal foraging or life history theory. However, most models ignore proximate complexities and infer simple rules specific to each context. They try to deduce what the organism must do, but do not provide a mechanistic explanation of how it implements decisions. We posit that the underlying cognitive machinery cannot be ignored. From the point of view of the animal, the fundamental problems are what are the best contexts to choose and which stimuli require a response to achieve a specific goal (e.g., homeostasis, survival, reproduction). This requires a cognitive machinery enabling the organism to make predictions about the future and behave autonomously. Our simulation framework includes three essential aspects: (a) the focus on the autonomous individual, (b) the need to limit and integrate information from the environment, and (c) the importance of goal-directed rather than purely stimulus-driven cognitive and behavioral control. The resulting models integrate cognition, decision-making, and behavior in the whole phenotype that may include the genome, physiology, hormonal system, perception, emotions, motivation, and cognition. We conclude that the fundamental state is the global organismic state that includes both physiology and the animal's subjective “mind”. The approach provides an avenue for evolutionary understanding of subjective phenomena and self-awareness as evolved mechanisms for adaptive decision-making in natural environments

    Extra-pair paternity explains cooperation in a bird species

    Get PDF
    In many social animals, females mate with multiple males, but the adaptive value of female extra-pair mating is not fully understood. Here, we tested whether male pied flycatchers (Ficedula hypoleuca) engaging in extra-pair copulations with neighboring females were more likely to assist their neighbors in antipredator defense. We found that extra-pair sires joined predator-mobbing more often, approached predators more closely, and attacked predators more aggressively than males without extra-pair offspring in the neighboring nest. Extra-pair mating may incentivize males to assist in nest defense because of the benefits that this cooperative behavior has on their total offspring production. For females, this mating strategy may help recruit more males to join in antipredator defense, offering better protection and ultimately improving reproductive success. Our results suggest a simple mechanism by which extra-pair mating can improve reproductive success in breeding birds. In summary, males siring extra-pair offspring in neighboring nests assist neighbors in antipredator defense more often than males without extra-pair offspring.publishedVersio
    corecore