4 research outputs found

    Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1

    Get PDF
    Beclin 1, a subunit of the class III phosphatidylinositol 3-kinase complex, is a tumour suppressor with a central role in endocytic trafficking, cytokinesis and the cross-regulation between autophagy and apoptosis. Interestingly, not only reduced expression but also overexpression of Beclin 1 is correlated with cancer development and metastasis. Thus it seems necessary for the cell to balance the protein levels of Beclin 1. In the present study we describe a regulatory link between Beclin 1 and the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4). We establish Nedd4 as a novel binding partner of Beclin 1 and demonstrate that Nedd4 polyubiquitinates Beclin 1 with Lys11- and Lys63-linked chains. Importantly, Nedd4 expression controls the stability of Beclin 1, and depletion of the Beclin 1-interacting protein VPS34 causes Nedd4-mediated proteasomal degradation of Beclin 1 via Lys11-linked polyubiquitin chains. Beclin 1 is thus the first tumour suppressor reported to be controlled by Lys11-linked polyubiquitination

    The TBC/RabGAP Armus Coordinates Rac1 and Rab7 Functions during Autophagy

    Get PDF
    Autophagy is an evolutionarily conserved process that enables catabolic and degradative pathways. These pathways commonly depend on vesicular transport controlled by Rabs, small GTPases inactivated by TBC/RabGAPs. The Rac1 effector TBC/RabGAP Armus (TBC1D2A) is known to inhibit Rab7, a key regulator of lysosomal function. However, the precise coordination of signaling and intracellular trafficking that regulates autophagy is poorly understood. We find that overexpression of Armus induces the accumulation of enlarged autophagosomes, while Armus depletion significantly delays autophagic flux. Upon starvation-induced autophagy, Rab7 is transiently activated. This spatiotemporal regulation of Rab7 guanosine triphosphate/guanosine diphosphate cycling occurs by Armus recruitment to autophagosomes via interaction with LC3, a core autophagy regulator. Interestingly, autophagy potently inactivates Rac1. Active Rac1 competes with LC3 for interaction with Armus and thus prevents its appropriate recruitment to autophagosomes. The precise coordination between Rac1 and Rab7 activities during starvation suggests that Armus integrates autophagy with signaling and endocytic trafficking
    corecore