142 research outputs found

    Emerging drugs for the treatment of vitiligo

    Get PDF
    Introduction: Vitiligo is a relatively common autoimmune depigmenting disorder of the skin. There has been a great advance in understanding the pathological basis, which has led to the development and utilization of various new molecules in treating vitiligo. This review aims at a comprehensively describing the treatments available and the emerging treatment aspects and the scope for future developments. Areas covered: This study comprehensively summarizes the current concepts in the pathogenesis of vitiligo with special focus on the cytokine and signaling pathways, which are the targets for newer drugs. JAK kinase signaling pathways and the cytokines involved are the focus of vitiligo treatment in current research, followed by antioxidant mechanisms and repigmenting mechanisms. Topical immunosuppressants may be an alternative to steroids in localized vitiligo. Newer repigmenting agents like basic fibroblast growth factors, afamelanotide have been included and a special emphasis is laid on the upcoming targeted immunotherapy. Expert opinion: The treatment of vitiligo needs to be multimodal with emphasis on targeting different limbs of the pathogenesis. Topical and oral JAK inhibitors are the most promising new class of drugs currently available for treating vitiligo and acts best in conjunction with NB-UVB

    Transcription factor trapping by RNA in gene regulatory elements

    Get PDF
    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.National Institutes of Health (U.S.) (HG002668)Biogen, Inc

    Genome of Linum usitatissimum convar. crepitans expands the view on the section Linum

    Get PDF
    Sequencing whole plant genomes provides a solid foundation for applied and basic studies. Genome sequences of agricultural plants attract special attention, as they reveal information on the regulation of beneficial plant traits. Flax is a valuable crop cultivated for oil and fiber. Genome sequences of its representatives are rich sources of genetic information for the improvement of cultivated forms of the plant. In our work, we sequenced the first genome of flax with the dehiscence of capsules—Linum usitatissimum convar. сrepitans (Boenn.) Dumort—on the Oxford Nanopore Technologies (ONT) and Illumina platforms. We obtained 23 Gb of raw ONT data and 89 M of 150 + 150 paired-end Illumina reads and tested different tools for genome assembly and polishing. The genome assembly produced according to the Canu—Racon ×2—medaka—POLCA scheme had optimal contiguity and completeness: assembly length—412.6 Mb, N50—5.2 Mb, L50—28, and complete BUSCO—94.6% (64.0% duplicated, eudicots_odb10). The obtained high-quality genome assembly of L. usitatissimum convar. crepitans provides opportunities for further studies of evolution, domestication, and genome regulation in the section Linum

    Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter

    Get PDF
    Double-stranded RNAs that are complementary to non-coding transcripts at gene promoters can activate or inhibit gene expression in mammalian cells. Understanding the mechanism for modulating gene expression by promoter-targeted antigene RNAs (agRNAs) will require identification of the proteins involved in recognition. Previous reports have implicated argonaute (AGO) proteins, but identifications have differed with involvement of AGO1, AGO2, or both AGO1 and AGO2 being reported by different studies. The roles of AGO3 and AGO4 have not been investigated. Here, we examine the role of AGO 1–4 in gene silencing and activation of the progesterone receptor (PR) gene. Expression of AGO2 is necessary for efficient gene silencing or activation and AGO2 is recruited to the non-coding transcript that overlaps the promoter during both gene silencing and activation. Expression of AGO1, AGO3 and AGO4 are not necessary for gene silencing or activation nor are AGO1, AGO3, or AGO4 recruited to the target non-coding transcript during gene activation. These data indicate that AGO2 is the primary AGO variant involved in modulating expression of PR by agRNAs

    Regulatory feedback from nascent RNA to chromatin and transcription

    Get PDF
    Transcription and chromatin function are regulated by proteins that bind to DNA, nucleosomes or RNA polymerase II, with specific non-coding RNAs (ncRNAs) functioning to modulate their recruitment or activity. Unlike ncRNAs, nascent pre-mRNA was considered to be primarily a passive player in these processes. In this Opinion article, we describe recently identified interactions between nascent pre-mRNAs and regulatory proteins, highlight commonalities between the functions of nascent pre-mRNA and nascent ncRNA, and propose that both types of RNA have an active role in transcription and chromatin regulation
    corecore