235 research outputs found

    Gluon flux-tube distribution and linear confinement in baryons

    Get PDF
    We have observed the formation of gluon flux-tubes within baryons using lattice QCD techniques. A high-statistics approach, based on translational and rotational symmetries of the four-dimensional lattice, enables us to observe correlations between vacuum action density and quark positions in a completely gauge independent manner. This contrasts with earlier studies which used gauge-dependent smoothing techniques. We used 200 O(a^2) improved quenched QCD gauge-field configurations on a 16^3x32 lattice with a lattice spacing of 0.123 fm. In the presence of static quarks flux tubes representing the suppression of gluon-field fluctuations are observed. We have analyzed 11 L-shapes and 8 T and Y shapes of varying sizes in order to explore a variety of flux-tube topologies, including the ground state. At large separations, Y-shape flux-tube formation is observed. T-shaped paths are observed to relax towards a Y-shaped topology, whereas L-shaped paths give rise to a large potential energy. We do not find any evidence for the formation of a Delta-shaped flux-tube (empty triangle) distribution. However, at small quark separations, we observe an expulsion of gluon-field fluctuations in the shape of a filled triangle with maximal expulsion at the centre of the triangle. Having identified the precise geometry of the flux distribution, we are able to perform quantitative comparison between the length of the flux-tube and the associated static quark potential. For every source configuration considered we find a universal string tension, and conclude that, for large quark separations, the ground state potential is that which minimizes the length of the flux-tube. The flux tube radius of the baryonic ground state potential is found to be 0.38 \pm 0.03 fm, with vacuum fluctuations suppressed by 7.2 \pm 0.6 %.Comment: 16 pages, final version as accepted for publication in Physical review D1. Abstract, text, references and some figures have been revise

    The Casimir Effect in Spheroidal Geometries

    Full text link
    We study the zero point energy of massless scalar and vector fields subject to spheroidal boundary conditions. For massless scalar fields and small ellipticity the zero-point energy can be found using both zeta function and Green's function methods. The result agrees with the conjecture that the zero point energy for a boundary remains constant under small deformations of the boundary that preserve volume (the boundary deformation conjecture), formulated in the case of an elliptic-cylindrical boundary. In the case of massless vector fields, an exact solution is not possible. We show that a zonal approximation disagrees with the result of the boundary deformation conjecture. Applying our results to the MIT bag model, we find that the zero point energy of the bag should stabilize the bag against deformations from a spherical shape.Comment: 24 pages, 3 figures. To appear in Phys. Rev.

    Charge symmetry violation in the parton distributions of the nucleon

    Get PDF
    We point out that charge symmetry violation in both the valence and sea quark distributions of the nucleon has a non-perturbative source. We calculate this non-perturbative charge symmetry violation using the meson cloud model, which has earlier been successfully applied to both the study of SU(2) flavour asymmetry in the nucleon sea and quark-antiquark asymmetry in the nucleon. We find that the charge symmetry violation in the valence quark distribution is well below 1%, which is consistent with most low energy tests but significantly smaller than the quark model prediction about 5%-10%. Our prediction for the charge symmetry violation in the sea quark distribution is also much smaller than the quark model calculation.Comment: RevTex, 26 pages, 6 PostScript figure

    Parton Distributions for the Octet and Decuplet Baryons

    Get PDF
    We calculate the parton distributions for both polarized and unpolarized octet and decuplet baryons, using the MIT bag, dressed by mesons. We show that the hyperfine interaction responsible for the ΔN\Delta - N and Σ0Λ\Sigma^0 - \Lambda splittings leads to large deviations from SU(3) and SU(6) predictions. For the Λ\Lambda we find significant polarized, non-strange parton distributions which lead to a sizable Λ\Lambda polarization in polarized, semi-inclusive epep scattering. We also discuss the flavour symmetry violation arising from the meson-cloud associated with the chiral structure of baryons.Comment: 29 pages, 15 figure

    Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering

    Get PDF
    We investigate the possibility of identifying an explicit pionic component of the nucleon through measurements of polarized Δ++\Delta^{++} baryon fragments produced in deep-inelastic leptoproduction off polarized protons, which may help to identify the physical mechanism responsible for the breaking of the Gottfried sum rule. The pion-exchange model predicts highly correlated polarizations of the Δ++\Delta^{++} and target proton, in marked contrast with the competing diquark fragmentation process. Measurement of asymmetries in polarized Λ\Lambda production may also reveal the presence of a kaon cloud in the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in Zeit. Phys.

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Dynamics of Light Antiquarks in the Proton

    Get PDF
    We present a comprehensive analysis of the recent data from the E866 experiment at Fermilab on Drell-Yan production in pD and pp collisions, which indicates a non-trivial x-dependence for the asymmetry between u-bar and d-bar quark distributions in the proton. The relatively fast decrease of the asymmetry at large x suggests the important role played by the chiral structure of the nucleon, in particular the pi-N and pi-Delta components of the nucleon wave function. At small x the data require an additional non-chiral component, which may be attributed to the Pauli exclusion principle as first suggested by Field and Feynman.Comment: version to appear in Phys. Rev.

    Experiments in lifelog organisation and retrieval at NTCIR

    Get PDF
    Lifelogging can be described as the process by which individuals use various software and hardware devices to gather large archives of multimodal personal data from multiple sources and store them in a personal data archive, called a lifelog. The Lifelog task at NTCIR was a comparative benchmarking exercise with the aim of encouraging research into the organisation and retrieval of data from multimodal lifelogs. The Lifelog task ran for over 4 years from NTCIR-12 until NTCIR-14 (2015.02–2019.06); it supported participants to submit to five subtasks, each tackling a different challenge related to lifelog retrieval. In this chapter, a motivation is given for the Lifelog task and a review of progress since NTCIR-12 is presented. Finally, the lessons learned and challenges within the domain of lifelog retrieval are presented

    Advances in lifelog data organisation and retrieval at the NTCIR-14 Lifelog-3 task

    Get PDF
    Lifelogging refers to the process of digitally capturing a continuous and detailed trace of life activities in a passive manner. In order to assist the research community to make progress in the organisation and retrieval of data from lifelog archives, a lifelog task was organised at NTCIR since edition 12. Lifelog-3 was the third running of the lifelog task (at NTCIR-14) and the Lifelog-3 task explored three different lifelog data access related challenges, the search challenge, the annotation challenge and the insights challenge. In this paper we review the dataset created for this activity, activities of participating teams who took part in these challenges and we highlight learnings for the community from the NTCIR-Lifelog challenges
    corecore