14 research outputs found

    Stereoinversion of tetrahedral p-block element hydrides

    Get PDF
    The potential energy surfaces of 15 tetrahedral p-block element hydrides were screened on the multireference level. It was addressed whether stereoinversion competes against other reactions, such as reductive H2-elimination or hydride loss, and if so, along which pathway the stereomutation occurs. Importantly, stereoinversion transition structures for the ammonium cation (C4v) and the tetrahydridoborate anion (Cs) were identified for the first time. Revisiting methane’s Cs symmetric inversion transition structure with the mHEAT+ protocol revealed an activation enthalpy for stereoinversion, in contrast to all earlier studies, which is 5 kJ mol−1 below the C–H bond dissociation enthalpy. Square planar structures were identified lowest in energy only for the inversion of AlH4−, but a novel stepwise Cs-inversion was discovered for SiH4 or PH4+. Overall, the present contribution delineates essentials of the potential energy surfaces of p-block element hydrides, while structure–energy relations offer design principles for the synthetically emerging field of structurally constrained compounds

    Stereoinversion of tetrahedral <i>p</i>-block element hydrides

    Get PDF
    The potential energy surfaces of 15 tetrahedral p-block element hydrides were screened on the multireference level. It was addressed whether stereoinversion competes against other reactions, such as reductive H2-elimination or hydride loss, and if so, along which pathway the stereomutation occurs. Importantly, stereoinversion transition structures for the ammonium cation (C4v) and the tetrahydridoborate anion (Cs) were identified for the first time. Revisiting methane’s Cs symmetric inversion transition structure with the mHEAT+ protocol revealed an activation enthalpy for stereoinversion, in contrast to all earlier studies, which is 5 kJ mol−1 below the C–H bond dissociation enthalpy. Square planar structures were identified lowest in energy only for the inversion of AlH4−, but a novel stepwise Cs-inversion was discovered for SiH4 or PH4+. Overall, the present contribution delineates essentials of the potential energy surfaces of p-block element hydrides, while structure–energy relations offer design principles for the synthetically emerging field of structurally constrained compounds

    Calix[4]pyrrolato Aluminate Catalyzes the Dehydrocoupling of Phenylphosphine Borane to High Molar Weight Polymers

    Get PDF
    High molar weight polyphosphinoboranes represent materials with auspicious properties, but their preparation requires transition metal-based catalysts. Here, calix[4]pyrrolato aluminate is shown to induce the dehydropolymerization of phosphine boranes to high molar mass polyphosphinoboranes (up to Mn=43 000 Da). Combined GPC and 31P DOSY NMR spectroscopic analyses, quantum chemical computations, and stoichiometric reactions disclose a P−H bond activation by the cooperative action of the square-planar aluminate and the electron-rich ligand framework. This first transition metal-free catalyst for P−B dehydrocoupling overcomes the problem of residual d-block metal impurities in the resulting polymers that might interfere with the reproducibility of the properties for this emerging class of inorganic materials

    The inversion of tetrahedral p-block element compounds: general trends and the relation to the second-order Jahn–Teller effect

    No full text
    The tetrahedron is the primary structural motif among the p-block elements and determines the architecture of our bio- and geosphere. However, a broad understanding of the configurational inversion of tetrahedral compounds is missing. Here, we report over 250 energies (DLPNO-CCSD(T)) for square planar inversion of third- and fourth-period element species of groups 13, 14, and 15. Surprisingly low inversion barriers are identified for compounds of industrial relevance (e.g., ≈100 kJ mol−1 for Al(OH)4−). More fundamentally, the second-order Jahn–Teller theorem is disclosed as suitable to rationalize substituent and central element effects. Bond analysis tools give further insights into the preference of eight valence electron systems with four substituents to be tetrahedral. Hence, this study develops a model to understand, memorize, and predict the angular flexibility of tetrahedral species. Perceiving the tetrahedron not as forcingly rigid but as a dynamic structural entity might leverage new approaches and visions for adaptive matter

    Calix[4]pyrrolato gallate: square planar-coordinated gallium(iii) and its metal–ligand cooperative reactivity with CO2 and alcohols

    No full text
    Forcing a priori tetracoordinate atoms into planar configuration represents a promising concept for enhanced reactivity of p-block element-based systems. Herein, the synthesis, characterization, and reactivity of calix[4]pyrrolato gallates, constituting square planar-coordinated gallium(III) atoms, are reported. Unusual structural constraint-induced Lewis acidity against neutral and anionic donors is disclosed by experiment and rationalized by computations. An energetically balanced dearomatization/rearomatization of a pyrrole unit enables fully reversible metal–ligand cooperative capture of CO2. While alcohols are found unreactive against the gallates, a rapid and selective OH-bond activation can be triggered upon protonation of the ligand. Secondary ligand–sphere modification adds a new avenue to structurally-constrained complexes that unites functional group tolerance with unconventional reactivity

    Dioxygen Activation and Pyrrole α‐Cleavage with Calix[4]pyrrolato Aluminates: Enzyme Model by Structural Constraint

    No full text
    The present work describes the reaction of triplet dioxygen with the porphyrinogenic calix[4]pyrrolato aluminates to alkylperoxido aluminates in high selectivity. Multiconfigurational quantum chemical computations disclose the mechanism for this spin-forbidden process. Despite a negligible spin–orbit coupling constant, the intersystem crossing (ISC) is facilitated by singlet and triplet state degeneracy and spin–vibronic coupling. The formed peroxides are stable toward external substrates but undergo an unprecedented oxidative pyrrole α-cleavage by ligand aromatization/dearomatization-initiated O−O σ-bond scission. A detailed comparison of the calix[4]pyrrolato aluminates with dioxygen-related enzymology provides insights into the ISC of metal- or cofactor-free enzymes. It substantiates the importance of structural constraint and element–ligand cooperativity for the functions of aerobic life
    corecore